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Abstract

Despite the seeming power of survival analysis over popular binary models in insurance at-
trition analysis, its consideration is now growing in the literature. Besides, studies have
only considered the Kaplan-Meier estimator and the Cox proportional hazards model.
To our knowledge, no single study has modeled insurance attrition using the accelerated
failure time model. This study presents some parametric models in survival analysis,
specifically, the accelerated failure time model. Furthermore, we investigate the applica-
bility of this model in analyzing insurance attrition using life insurance data. We show
for the first time that the accelerated failure time model offers an attractive alternative
to the Kaplan-Meier estimator, and the Cox proportional hazards model in estimating
insurance attrition. Based on the Akaike information criterion, the generalized gamma
model provides the best fit for the data. This work will serve as the basis for the consider-
ation of parametric survival models in estimating insurance attrition, deepen knowledge
in retention analysis, and broaden the scope of survival analysis.

Keywords: Insurance Attrition, Survival Analysis, Accelerated Failure Time Model,
Proportional Hazards Model.
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1 Introduction

The growing need to include covariates in the analysis of time-to-event data has
brought forth the two popular regression models: the Cox proportional hazards model
(PH model) and the accelerated failure time (AFT) model. The Cox proportional hazards
model (D. R. Cox, 1972) is the most popular and widely used regression model in survival
analysis. Beyond its extensive use in biostatistics, it is also receiving attention in finance,
insurance, labor market research, and political science (Xue & Schifano, 2017). The
PH model assumes that the effect of covariates is multiplicative on the hazard and that
for any two individuals with fixed covariates, the hazard ratio is constant. Despite the
benefits of the PH model, it has been met with some criticisms. Notably, the proportional
hazard assumption is seldom met, and this problem is more acute if many predictors in a
multivariate analysis were to meet the assumption (Khanal, Sreenivas, & Acharya, 2014).

Parametric regression models offer an attractive alternative to make predictions
beyond the last survival time and when hazard functions or relative survival times are
of primary interest or measure of association (C. Cox, Chu, Schneider, & Munoz, 2007).
George, Seals, and Aban (2014) identified three classes of parametric models: parametric
proportional hazards, the additive hazards model, and the AFT model. Here, we focus on
the last class, the AFT model, a case similar to conventional linear regression. The AFT
model explains a linear relationship between the logarithm of the survival time and the
covariates. Furthermore, the model is comparatively easier to implement and interpret.
Also, unlike the proportional hazards model, the AFT model assumes a multiplicative
effect of covariates on survival time (Swindell, 2009). Even though there are clear cut
benefits of AFT models, they come with strong assumptions about the distribution of
the event-time. Also, the choice of the appropriate parametric distribution is not a
straight forward task. Nonetheless, the AFT model describes the evolution of the time-
to-event better when the assumptions of the underlying distribution are met. Besides,
in implementing the AFT model, one does not necessarily have to check, a prior, the
proportional hazards assumption. For some comparative discussion and application of
the PH and AFT models, (see, for example Bradburn, Clark, Love, & Altman, 2003;
Clark, Bradburn, Love, & Altman, 2003).

The application of survival analysis is widespread and not new, from criminology
to epidemiology. However, unlike the PH model, parametric models are not a common
choice in lifetime analysis. That notwithstanding, they are widely used in modern medical
statistics and actuarial work (Richards, 2011) and are considered in different applications.
In retention analysis, specifically in insurance, survival analysis has shown an added ad-
vantage over popular binary regression models and thus receiving consideration in the
literature. Nevertheless, up to our knowledge, no single study has modeled insurance
attrition using the AFT model. In regards, this study demonstrates that the AFT model
is an efficient alternative to the Kaplan-Meier (KM) and PH methods in estimating insur-
ance attrition. Consequently, we propose that consideration be given to its application
in analyzing insurance attrition.
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The rest of the paper is organized as follows: Section 2 presents some useful con-
cepts, the accelerated failure model, model selection, parameter estimation, and a brief
discussion of the PH model. The application of the AFT model in insurance attrition
is discussed in Section 3. Data analysis and results are presented in Section 4, and we
conclude in Section 5.

2 Methods

2.1 Parametric model

In this model, the survival time is assumed to follow a known distribution. Paramet-
ric survival models are known for their consistency with theoretical survival, completeness
(hazard and survival are specified), time-quantile prediction, and simplicity (Datwyler &
Stucki, 2011). Some distributions commonly used for modeling survival time are expo-
nential, Weibull, log-logistic, log-normal, gamma, and generalized gamma. For extensive
discussion and illustrations, see Kleinbaum and Klein (2010), Marshall and Olkin (2007)
and Klein and Moeschberger (2006). These models have been assessed in various ap-
plications in the literature for their fit to time-to-event data (see, for example Abadi,
Amanpour, Bajdik, & Yavari, 2012; George et al., 2014; Montaseri, Charati, & Espah-
bodi, 2016). The Weibull distribution is known to be the most commonly used survival
model. This has been attributed to the flexibility of its hazard function. However, where
the underlying hazard function is a bathtub or unimodal shaped, the Weibull distribution
does not provide a reasonable parametric fit (Barriga, Louzada-Neto, & Cancho, 2008).
In the following, we discuss the AFT model and then, briefly, these commonly used sur-
vival models. Further, we investigate the applicability of the AFT model in insurance
attrition analysis.

2.2 Some useful concepts

Let T denote the survival time of the event of interest. The survival function, Sr(¢)
is the probability that the event occurs later than some time ¢ and defined as

Sr(t)=P(T >t), Vt>0.
The lifetime of 7" can also be characterized by; the probability density function (pdf)
fr(t) = =57(t),

the hazard function
rt) = Frl0)/Se(t) = —S5(1)/52(t) = — I (S (1),

the cumulative hazard function
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and the mean time to event

) = () [ Srtwan

Mainly, f(¢), S(t) and h(t) are fundamental, and specifying one allows the other two
to be derived. In particular, S(t) and h(t) are more interesting and better explains the
evolution of T

2.3 The accelerated failure time (AFT) model

For a given survival time 7" and a vector of covariates X € RP with corresponding
parameters 8 € RP, the accelerated failure time model can be formulated on the log-scale
(similar to linear regression) as

Y =08+ 5X +e, (1)

where Y = log(T'), ¢ is a random error term assumed to follow some parametric distribu-
tion and fy is the intercept. For some distributions (e.g. Weibull) there is an additional
parameter o, which scales €. In this case, the AFT model becomes;

Y =+ X + oe. (2)

The AFT model assumes that covariates have a multiplicative effect on the survival time
and an additive effect (see equations 1 and 2) on log(7"). From equation (2), the former
implies

T =exp (Bo + B'X + 0¢) = exp (Bo) x exp (8'X) x exp (0¢) .
Also, the survival function of T" can be expressed in terms of the survival function of e.
Given the set of covariates, the survival function of 7" denoted as Sy x(t|x) is derived as

follows:
Srix(tlz) = P(T > t|X =2) = P (" > t|X =2)

(eﬁo+B/X+0€ > X = x) =P (Bo+ X +oe>logt|X =x)

_p (5 > %(logt— (Bo + B/X)) | X = x)

= 5. (1 (gt — (4 + 90) ) ®)
AN

5. (s () )

=S.(y), where y = log (ﬁ) v .

In the following, we look at some common distributions of the error term ¢ and for each,
the associated AFT model of T'.
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Exponential

The exponential distribution has the survival function, Sp(t) = e~ for all t > 0, A\ > 0
and a constant hazard function hp(t) = A. If the lifetime 7" is exponential, then ¢ follows
a Gumbel distribution with the survival function S. (y) = exp (—e?), and from equation
(1) we obtain

Stix (t|z) = exp (=At), where 1/\ =exp (S + 'x).

The exponential distribution is both a PH model and an AFT model with different
parametrization, where in the former A = exp (8o + ') .

Appropriateness Check (Graphical method)

The AFT assumption holds for the exponential model if a plot of log[— log S(t)] against
log(t) yields a straight line with a unit slope, where S(t) is the KM (Kaplan & Meier,
1958) survival estimate.

Weibull

The Weibull distribution with shape and scale parameters a and A respectively, have the
survival function

ST (t) = 67(/\15)0‘

and hazard function
hr(t) = aX*t* !

forall t >0 and A, «,> 0. The hazard function is increasing if o« > 1 and decreasing
if « < 1. When a = 1, the Weibul model reduces to the exponential model. There
are several ways of parameterizing the Weibull distribution. Similar to the exponential
model, the Weibull model is also related to the Gumbel distribution. In this case, we
have;

Stix(tlz) = exp (— (M)®), where 1/A = exp (fy + f'z) and a = 1/0.

We can see that the exponential model is a special case of the Weibull model with a shape
parameter equal to 1. Both models are also candidates for the PH assumption.

Appropriateness Check(Graphical method)

The AFT assumption holds for the Weibull model if a plot of log[— log S(t)] against log(t)
yields a straight line, where S(t) is the KM survival estimate. For covariates with two or
more levels, the AFT assumption holds if the lines are straight and parallel, otherwise,
it is violated.

Log-logistic

The lifetime T follows a log-logistic distribution if ¢ is logistically distributed with survival
function

Se(y) = 1/(1 + ).
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In regards, the log-logistic AFT model has a survival function given as

Srix(t|z) = where 1/ =exp (B + f'z), a =1/0.

1
1+ ()"
Unlike the Weibull model, the log-logistic AFT model provides a non-monotonic hazard
function. The hazard decreases monotonically over time when o« < 1 and it is unimodal
when o > 1.

Proportional Odds (PO) model

In a PO model, the ratio of the odds of survival does not depend on time (i.e constant).
The odd of survival is the ratio of the probability of surviving beyond time ¢ to the
probability of failure at time t. The inverse of survival odds gives the failure odds, the
odds of failure at time t. The log-logistic AFT model is a PO model as shown below.
Let’s consider two levels of a covariate, namely x; and z5. The survival odds and the
survival odds ratio of the two levels are obtained as follows.

(Srix(tlz1)) / (1 = Spix (tlzr)) = 1/ (Mt)*,  where Ay = 1/ (exp (8o + Bz1)) , o = 1/0

Stix(tlz1)/ (1= Spx(tle1)) _ (et)” _ A3

ST‘X<t|$2)/ (1 — ST|X(t|$2)) (Alt)a )\?
Appropriateness Check (Graphical method) ) R A )
The log-logistic assumption holds if a plot of log[S(t)/(1 — S(t))] or log[(1 — S(t))/S(t)]
against log(t) yields a straight line of slope —a and « respectively. For covariates with

two or more levels, the AFT assumption holds if the lines are straight (log-logistic) and
parallel (PO).

Log-normal

If ¢ follows the standard normal distribution (i.e &€ «~ A(1,0)), then S.(y) =1 — ®(y),
where ®(y) is the cumulative density function of the standard normal distribution. In
this case, T follows the log-normal distribution and has the survival function given by

logt — (6 +6’w)> |

o

Spyx(tlr) =1— @ (

We can see that T~ N (8o + 'z, o). The log-normal AFT model does not model
accurately, most time-to-event distributions. Its hazard function initially increases from
0 to reach a maximum and then afterward decreases monotonically, approaching 0 as
t — 00.

The log-normal and log-logistic models yield similar results. However, the PO property
of the later differentiates the two.

Appropriateness Check (Graphical method) )
For the log-normal distribution, the AFT assumption holds if a plot of ®~![1 — S(¢)]
versus log(t) is linear.
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Gamma

The probability density function of the gamma distribution with shape parameter a > 0
and rate parameter A\ > 0 is given by
A o
fr(t) = mta_le_)‘t Vt >0, where I'(a) = / t*te7'dt is the gamma function.
o 0
The survival function and the hazard function do not have a closed form expressions
which are given by
Sr(t) /Oof()d A /OO oo My =1 — I(\t, a)
r(t) = r(uw)du = — u® e u=1-— , Q)
t I'(a) J;

where [(.) is the incomplete gamma function.
he(t) = fr(t)/ ( / Fr(u) du) Y <1+ (a—1) / SQQeM(SI)ds).
t 1

The hazard of the gamma model is increasing if & > 1, decreasing if @ < 1 and constant
if « = 1. In the last case, the gamma model reduces to exponential, and as t — oo, the
hazard is equal to A (constant). The gamma model has properties that are somewhat
similar, though not mathematically tractable, to the Weibull model as observed above.
From equation (1), 7" has a gamma distribution if € has a negatively skewed distribution
with skewness decreasing with increasing «, and a pdf defined as (Kalbfleisch & Prentice,
2011).

_e¥
edy—e

fa(y): F(Oz) Vy>(),04>()

and the AFT model has the pdf

[0}

Jrx(tlz) = %ta_le”‘t, where A = 1/exp (8y + 5'x).

Generalized gamma

This model extends the gamma distribution by adding the parameter o, which scales
the error term ¢ as in equation (2), where ¢ has the pdf defined above for the gamma
distribution. This gives the pdf of T" for the generalized gamma AFT model as
o Py)\’ya ya—1_—(\t)Y — / =

fT\X(ﬂfE)—mt e , where A\ = 1/exp (6y + f'x), 7v=1/0.
It is easy to check that the generalized gamma distribution includes in special cases, the
exponential when @ = o = 1; the gamma when ¢ = 1; the Weibull when o = 1, and
approximates the log-normal distribution as o — oo.
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2.4 Parametric model fit checks

In addition to the graphical method, there are other metrics for checking the fitness
of the underlying distribution of the AFT model. One popular method for comparing
AFT models with different underlying distributions is the Akaike (Akaike, 1969) infor-
mation criterion (AIC), defined as AIC' = —2[ 4 2p, where [ is the log-likelihood, and p
is the number of parameters in the model (model-specific and covariates). Another tool
similar to the AIC is the Bayesian (Schwarz et al., 1978) information criteria (BIC) com-
puted as BIC = —2l+plog(n), where n is the number of observations. In both methods,
the decision is to consider the model with the smallest AIC or BIC. Also, the likelihood
ratio (LR) test can be used to compare nested models (Qi, 2009). Other methods are the
quantile-quantile plot and the Cox- Snell (D. R. Cox & Snell, 1968) residuals plot.

2.5 Parametric model estimation

The maximum likelihood method can be used to estimate the parameters of the AFT
model. This is based on the assumption that event times are independent and there are
no competing risks. Also, the method can accommodate right, left, or interval-censored
data (Kleinbaum & Klein, 2010). However, this study is restricted to the right-censored
case. To be precise, Type I right censoring. Suppose we have n observations from a time-
to-event study, and the event time for each observation is either censored or observed
and independent of other event times. Let § = (64,...0,) for j € (1,...p) be the set of
parameters to estimate. The maximum likelihood for the AFT model is formulated as
follows.

L (0lobs, ) = [ [ (f(tilwi, 0)" (S(tils, 0))' %,
=1
where f(.) and S(.) are the density and survival functions of the distribution of 7', and
. . o 1 it T<C, .
for 1 <7 < n, J; is the censoring indicator such that § = ] where C' is
0 if T>C,

the study end date.

The maximum likelihood estimate of each parameter in 6 is obtained by solving the
score function

dlog L (0|obs, d)
00,
Solving this score function can lead to painful expressions, near impossible. Estimates

can then be obtained easily by numerical approximations. One possible consideration is
the popular Newton-Raphson method.

=0, forj =1,2,...,p.

2.6 Cox proportional hazards (PH) model
The hazard function of the PH model is given by

hrix (tlz) = ho(t;0)e”® Vit >0,
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where hy(t;0) is a baseline hazard function (to be specified) with unknown parameter(s)
6. The effect of the covariates is multiplicative on the hazard. For two levels of the
covariate X, namely x; and z9, the proportion

h(tley) — ho(t;0)e”™ ™ b o

h(tlza) ~ ho(t;0)ef= P

is a constant, called the hazard ratio (HR). The survival, cumulative hazard and the
probability density function of the PH model is derived accordingly as

t

t t
Hrx (t|r) = / hrix (ulz)du = / ho(u; 0)e” " du = eﬁ/x/ ho(u; 0)du = Hy(t; 0)e”™
0

0 0
ST\X(ﬂx) — o Hrix(tle) — 6—Ho(t;9)63/z _ [e—Ho(t;e)]eﬁ T _ [So(t;(g)]eB/I Vi>0

Frix () = [y (Ha)] [Srix (H)] = ho(t; 0)e” *[So(t: )],

where Sy(t;0) and Hy(t;0) are the baseline survival and cumulative hazard functions
respectively.

3 Application in insurance attrition

Customer retention is one of the main contributors to business profit and growth,
and it is an essential part of marketing, pricing, and customer service initiatives. Reten-
tion is highly crucial in a purely customer-oriented business where projected profits are
tied to the loyalty of customers. As customer needs become more sophisticated in a very
competitive industry, winning a new policy contract is relatively more expensive than
retaining an existing one. It is, therefore, imperative for insurance providers to have a
better understanding of the evolution of customer attrition for effective implementation
of customer service initiatives. Before proceeding, let’s differentiate between customer
retention and attrition. In simple terms, retention relates to customers who stay after a
specified period. In contrast, attrition relates to those customers who leave (or defect)
after a specified period. It is also popularly referred to as customer churn. Retention and
attrition are mostly measured in terms of rate, thus retention rate and attrition rate, and
are complements.

Retention analysis is popular in marketing research and practice, banking, insur-
ance, and telecommunications industry. The focus is often on whether or not attrition
will occur after a specified duration and the key drivers of attrition. Whereas in banking,
this could be whether a customer will default a loan, in insurance, the interest is whether
a policyholder will renew or cancel his policy after, say a year. Conventional methods in
retention analysis are the generalized linear models (GLM), specifically logistic and probit
regressions, decision trees, neural networks and random forest (Goonetilleke & Caldera,
2013; Hosseni, Tarokh, et al., 2011; Smith, Willis, & Brooks, 2000; Spiteri & Azzopardi,
2018; Su, Cooper, Robinson, & Jordan, 2009). These methods are easy to understand and
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interpret, and very useful when the interest is to determine whether attrition will occur
or not. However, they only identify the attrition status of a customer, but they do not
answer the question of when he will leave or defect (Banasik, Crook, & Thomas, 1999; Lu,
2002). To overcome this limitation, alternative methods (in particular), survival analysis
have since been adopted in the recent literature. Survival analysis does not only model
the attrition status of a customer but also when attrition will occur. Furthermore, unlike
binary models, survival analysis can accommodate time-varying macroeconomic variables
and differentiate attrition into non-renewal and cancellation (Fu & Wang, 2014).

Despite the seeming power of survival analysis over conventional models in insurance
attrition analysis, its consideration is now growing in the literature. Besides, studies
have only considered the KM estimator and the PH model (see for example, Aziz &
Razak, 2019; Brockett et al., 2008; Fu & Wang, 2014; Guillén, Nielsen, Scheike, & Pérez-
Marin, 2012; Harrison & Ansell, 2002; Hasanthika & Jayasekara, 2017; Pérez Marin, 2006;
Spiteri & Azzopardi, 2018). To the best of our knowledge, no single study has modeled
insurance attrition using the accelerated failure time (AFT) model. In this study, we
propose the AFT model as an alternative to the KM estimator and the PH model in
estimating insurance attrition. Further, the applicability of the model in this context is
demonstrated using life insurance data. We expect that this work will unveil the need
to consider parametric survival models in insurance attrition analysis, and possibly in
retention analysis.

3.1 Risk factors associated with life insurance attrition

Empirical studies have shown that policy and policyholder characteristics, as well
as economic and the investment environment are risk factors associated with customer
attrition in life insurance.

Most findings from the literature showed interest rates and (or) unemployment as
significant risk factors of customer attrition in life insurance (Dar & Dodds, 1989; Kuo,
Tsai, & Chen, 2003; Outreville, 1990) based on standard time series regressions and
cointegration techniques. Also, Kagraoka (2005) observed that the surrender of personal
accident insurance contracts is explained by changes in the unemployment rate. However,
Kim (2005a), Kim (2005b), Samuel and Lin (2006) and Kiesenbauer (2012) demonstrated
that beyond the interest rate and unemployment rate, policyholder attrition behavior
depends on additional exogenous factors such as policy age, GDP growth, surrender
charge, buyer confidence and company age, based on a broad class of generalized linear
models.

Also, Pinquet, Guillén, and Ayuso (2011) modeled the attrition of long-term in-
surance contracts, using proportional hazard models and found that policyholder’s age,
health history and method of premium payments are risk factors of customer attrition.
Similarly, Milhaud and Dutang (2018) established an association of policyholder’s smok-
ing status, age, and payment frequency of premium with life insurance attrition. Further-
more, the findings of Renshaw and Haberman (1986), Cerchiara, Edwards, and Gambini
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(2008), Milhaud, Loisel, and Maume-Deschamps (2010) and Eling and Kiesenbauer (2014)
suggest that policy duration and policy type are essential drivers of life insurance attri-
tion. Other risk factors associated with life insurance attrition include; policyholder’s
age and gender (Cerchiara et al., 2008; Eling & Kiesenbauer, 2014; Milhaud & Dutang,
2018).

In summary, the empirical evidence outlines the importance of economic indicators
(such as interest rate and unemployment rate), policyholder characteristics (such as age,
gender, and health-related habits) and policy characteristics (such as duration, type, and
premium payment scheme) in estimating customer attrition in life insurance.

4 Data Analysis

4.1 Data

We investigate the applicability of the AFT model in estimating insurance attrition
using the life insurance data used in Milhaud and Dutang (2018). The data is a portfolio
of 29,317 Whole Life policies from anonymous life insurers in the United States sold from
the tied-agent channel between January 1995 and December 2008. We retrieved it from
the R package “CASdatasets” (version 1.0-10) by Dutang and Charpentier (2019). The
data consists of both categorical and continuous covariates, which are the characteris-
tics of a policy, the policyholder, and the investment environment. Milhaud and Dutang
(2018) differentiated attrition into surrender and other causes (e.g death), which they
collectively defined as a lapse. Also, they modeled contract lifetime by a competing risk
approach. Again, in their analysis, they compared a nonparametric regression model and
a proportional hazards model (Fine & Gray, 1999) and found that the later is quite effi-
cient in accurately predicting policy lifetime. However, in this study, we do not consider
such differentiation, and we model attrition by a cause-specific approach using an acceler-
ated failure time model (AFT). Also, we consider additional data on the unemployment
rate (see Eling & Kochanski, 2013) for the same period taken from IMF (2020). In life
insurance, lapse and surrender are two related technical terms used to somewhat refer to
attrition. Here, attrition is used to refer to both surrender and lapse.

4.2 Results

4.2.1 Preliminary analysis

In Table 1 and Table 2, we present the descriptive statistics of the insurance portfo-
lio. The time duration (in quarters) in Table 1 indicates the survival time of a policy, in
this case, the time from the onset of the contract until attrition occurs. On average, the
lifetime of a policy in the portfolio is 30.26 quarters. The average annual premium (on
the original scale) for all payment streams is $560.88. Also, the mean unemployment rate
for the follow-up period (1995 - 2008) is 5.18%. The Dow Jones Index (DJIA) quarterly
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variation is standardized on the original scale. Later the normalized values of the DJIA
quarterly variation and the unemployment rate will be considered.

Furthermore, the binary censoring indicator in Table 2 describes the attrition sta-
tus of a policy (observed or censored). The data seem balanced for the gender covariate
(50.05% male and 49.95% female policyholders). Invariably, more male policyholders
(1.44%) than females have experienced attrition. Also, a higher proportion of non-
smokers, young and non-accidental death riders are observed compared to their coun-
terparts. Further, more than half (74.78%) of the policyholders in the portfolio live in
other addresses other than East coast and West coast. More so, over 50% of the policies
have infra annual premium payment frequency. Accordingly, higher than half (33.54%
out of 61.37%) of these policies experienced attrition. In the following, we study the
attrition lifetime using a survival model.

Table 1: Policy and environment characteristics

Covariate Time Annual Dow Jones Unemployment
duration (in quarters) premium Index (DJIA) variation rate
Min 0.01 -1.07 -4.53 3.6
mean 30.26 $560.88 0 5.18
max 62.09 12.13 2.43 7.1
Std dev. 18.78 $526.59 0.05 0.68

Note: The correlation values between each pair of the covariates are 0.05, 0.04 and 0.01

Table 2: Policy and policyholder characteristics (categorical)

Covariate Percentage (%) Censoring indicator
Censored (%) Observed (%)
Gender Male [0] 50.05 23.98 26.07
Female [1] 49.95 25.32 24.63
Payment frequency infra annual( monthly, quarterly, semi-annual) [0] 61.37 27.83 33.54
annual [1] 23.44 12.68 10.77
other (supra annual) [2] 15.19 8.8 6.39
Risk state smoker [0] 36.99 19.03 17.95
non smoker [1] 63.01 30.27 32.75
Underwriting age young ( 0 to 34 years old ) [0] 47.46 23.38 24.08
middle (35 to 54 years old ) [1] 34.04 15.61 18.43
old ( 55 to 84 years old) [2] 18.5 10.31 8.19
Living place East coast [0] 20.62 9.99 10.63
West coast [1] 4.6 2.41 2.19
other [2] 74.78 36.9 37.89
Accidental death rider Rider [0] 16.42 9.1 7.33
Non rider [1] 83.58 40.2 43.37
Censoring indicator 0 : censored 49.3
1 : observed (attrition) 50.7

23



The Journal of Risk Management and Insurance Vol. 24 No. 2 (2020)

In Figure 1, we first check if the attrition lifetime differs across various subgroups.
To achieve this, we adopt a graphical approach. For the gender covariate, the survival
curve for females lies closely above that of males after period 10 (in quarters). This
implies the lifetime of females differs significantly from males. Also, there appear some
differences in the survival curves for risk state, premium frequency, and underwriting.
Furthermore, the mean survival times of the different levels of these covariates differ
significantly. However, the plots for the living place are overlapping and thus appear
not very different. This implies that living place may not be a risk factor of customer
attrition. However, we will still consider this covariate in the model to further investigate
its significance in insurance attrition.

Survival estimates for gender Survival for Accidental death rider
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Figure 1: Kaplan-Meier survival curves for subgroups of categorical covariates

PH assumption

Before we take the analysis further to the AFT model, we want to check, not
necessarily a prior, the proportional hazard assumption. The goodness of fit test in
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Table 3 gives a significant global p-value. Therefore the global null hypothesis that the
proportionality assumption holds is rejected, and the PH model is not appropriate here.
In the following, we proceed to model the attrition lifetime data using the AFT model.

Table 3: Goodness of fit testing for PH assumption

Covariate chisq df p

Gender 2.719 1 0.0990
Payment frequency 25.878 2 0.0000
Risk state 0.152 1 0.6960
Underwriting age 19.243 2 0.0001
Living place 0.459 2 0.7950
Accidental death rider 4.66 1 0.0310
Annual premium 3.643 1 0.0560
Dow Jones Index variation — 86.839 1 0.0000
Unemployment rate 1570.603 1  0.0000
GLOBAL 1750.317 12 0.0000

4.2.2 AFT model fitting

To start with, we first check the assumption of the AFT model for the underlying
distributions. For the exponential, Weibull, log-logistic, and log-normal models, we use
the graphical approach. By comparing the plots in Figure 2, we can see that they ap-
proximate fairly, straight lines. However, the Weibull presents a slightly better straight
line through the origin, which gives the exponential if it has a unit slope. Thus, the
Weibull and exponential assumptions hold better than that of the log-logistic and log-
normal models. Also, the plot for the log-logistic appears more straight and close to
the origin than the log-normal, which bends towards the right. The generalized gamma
approximates these models in special cases except for the log-logistic. Therefore, we will
investigate its suitability for the attrition lifetime data.

Next, we now model the data using the exponential, Weibull, log-logistic, log-
normal, and generalized gamma AFT models. In each case, first, we fit the model for each
covariate in the univariate setting and then all the covariates in the multivariate case.
In both the univariate and multivariate AFT models, all the covariates are statistically
significantly associated with time to attrition except living place at an error level of 5%,
which is consistent with Figure 1. The results, quite similar, for the exponential, Weibull,
log-logistic, and log-normal models are presented in the appendix.

In Table 4, we compare the performance of all the models using the Akaike informa-
tion criterion (AIC) and the Bayesian information criterion (BIC). The model with the
smallest AIC or BIC is considered to provide the best fit. Based on the two criteria, the
generalized gamma model is the appropriate AF'T model for the attrition data, although
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Figure 2: Graphical check of AFT assumption for exponential/Weibull, log-logistic and
log-normal distributions

it is only slightly better than the Weibull model. Also, the log-normal and log-logistic
models perform poorly, which is consistent with the results in Figure 2.

Table 4: Akaike and Bayesian information criteria (AIC and BIC)
for the AF'T models

Model No. of parameters (p) Log-likelihood (L) AIC BIC
Exponential 13 -70993.70 142013.30  142045.473
Weibull 14 -70978.00 141984.10  142018.54
Log-logistic 14 -72147.70 144323.30  144357.94
log-normal 14 -72974.00 145976.00  146010.54
Generalized gamma 15 -70583.40 141196.8  141233.807

Note: p = model-specific parameters + no. of betas for the covariates

Overall goodness-of-fit

We assess the goodness of fit of the generalized gamma model using the Cox-Snell
residuals plot. Furthermore, we compare the survival estimates from the parametric
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model to the non-parametric (KM) estimates. In Figure 3, the survival curve of the fitted
AFT model approximates fairly the baseline KM survival, although there appear some
departures at early through to mean time duration. Also, the residuals plot approximates
the straight line through the origin in the beginning and then afterward shifts for higher
values. The assignable cause could be due to covariates that are subject to seasonal
variations, in particular, the DJIA quarterly variation and unemployment rate.
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Figure 3: KM /fitted survival plot (left) and residual plot (right) of Generalized gamma
for all covariates

To understand the shift in the estimates of the model, we drop the DJIA quarterly
variation and the unemployment rate covariates and then fit a new generalized gamma
model for the remaining covariates. Interestingly, the survival plot (Figure 4) suggest a
very good fit of the model. Thus, we can attribute the shift in the full model to possible
seasonal variations in the DJIA variation and unemployment rate. Accordingly, we are
confident that the generalized AFT model provides a good fit for the data. However, in the
presence of the DJIA variation and unemployment rate, the model tends to overestimate
for some time duration.

Interpretation of the results

The results of the generalized gamma AFT model fitted to all the covariates are
presented in Table 5. The effect of a covariate is to accelerate or decelerate the attrition
lifetime. To understand this better, a time ratio (TR), also called the acceleration factor
is estimated. The acceleration factor for a given covariate is the (natural) exponent of
the corresponding coefficient (i.e exp(f)). A positive coefficient means the effect of the
covariate is to prolong the survival time while a negative coefficient is to shorten the time
to attrition. Relatively, a time ratio greater than 1 implies the effect of the covariate
increases the survival time and otherwise decreases (“speeds up”) the time to attrition.
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Figure 4: KM estimate and survival of fitted Generalized gamma without DJIA and un-
employment

The TR of 0.9667 for males relative to females implies gender is a significant pre-
dictor of customer attrition, and men are at a slightly higher risk compared to women.
This may be attributed to the general conception that women are naturally risk-averse,
and thus less likely to be observed for attrition earlier, compared to male policyholders.
The implication of this to the insurer is that gender should be considered in attrition
risk profiling of an insurance portfolio. Also, compared to policies with annual payment
frequency, infra annual policies (TR =0.8869) are at high risk of attrition while that of
supra annual policies (TR =1.0554) are at low risk. While in practice, short term pay-
ment frequency may put premium within the means of potential customers, over time,
the insured may become stressed out, especially when their short term expenses go up
without a corresponding increase in income. The insurer may take into consideration
the source of funding of a policyholder and adjust the payment frequency accordingly
while keeping premium at an affordable level. Potential customers with multiple sources
of finances may not be overstretched financially with monthly payments, coupled with
increasing expenses overtime.

Interestingly, smokers (TR=1.0512), the old (TR=1.1806), and accidental death rid-
ers (TR=1.1074) have longer survival times compared to their counterparts. Naturally,
these groups have higher exposure to the risk of death, and therefore, may be willing to
keep their policies compared to other policyholders in the same portfolio. Accordingly,
these risk factors should be considered when profiling policies for the risk of attrition.
Middle-aged policyholders may have demand for funds to own property and possibly,
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invest or save towards retirement compared to young policyholders. Hence, they are at
high risk of diverting their premiums to other alternative investment products. Also, after
meeting health-related costs, old-aged policyholders may not have an immediate demand
for funds, hence at a lower risk of attrition compared to middle-aged and young policy-
holders. Similar to the results in Figure 1, the living place covariate is not significant.
Hence it does not explain the attrition evolution of a policyholder.

Conversely, the coefficients for the annual premium, DJIA quarterly variation, and
unemployment rate covariates are negative. Accordingly, the effect of these covariates is
to decrease survival time. An increase in the unemployment rate will shorten the survival
time and thus increase the risk of attrition. This result is expected as a loss of income will
inevitably affect the capacity of policyholders to honor their premiums. Also, an increase
in premium may trigger customers who do not see it justifiable to terminate their policies
since they may feel being cheated. Further, policyholders who are well informed about
the investment environment (or have advisors) may react accordingly to increases in the
DJIA quarterly variation and thus are at high risk of attrition. Policyholders should
therefore be well informed early enough of any possible increase in premiums by the
insurer to sustain their trust. However, the DJIA and unemployment rate tend to inflate
the estimates at early to mean durations, which tends to explode the risk of attrition.

Table 5: Generalized gamma AFT model

Covariate 54 TR (exp(8)) P-value 95% CI (TR)
Gender Male [0] -0.0339 0.9667 0.0160 0.9404 0.9937
Female [1]
Payment frequency infra annual [0] -0.1200 0.8869 0.0000 0.8556 0.9183
annual [1]
other (supra annual) [2] 0.0539 1.0554 0.0408 1.0023 1.1118
Risk state smoker [0] 0.0499 1.0512 0.0007 1.0211 1.0821
non smoker [1]
Underwriting age young ( 0 to 34 years old ) [0] 0.0307 1.0312 0.0464 1.0005 1.0628
middle (35 to 54 years old ) [1]
old ( 55 to 84 years old) [2] 0.1660 11806  0.0000 1.1320 1.2312
Living place East coast [0]
West coast [1] 0.0119 1.0120 0.7525 0.9396 1.0900
other [2] 0.0064 1.0064 0.7100 0.9730 1.0411
Accidental death rider Rider [0] 0.1020 1.1074 0.0000 1.0634 1.1537
Non Rider [1]
Annual premium -0.0597 0.9420 0.0000 0.9314 0.9529
Dow Jones Index variation -0.5740 0.5633 0.0000 0.5532 0.5735
Unemployment rate -0.3810 0.6832 0.0000 0.6730 0.6935

5 Conclusion

This study proposes the accelerated failure time (AFT) model as an alternative to
the popular PH model in estimating insurance attrition. Further, we have fitted this

29



The Journal of Risk Management and Insurance Vol. 24 No. 2 (2020)

model for the exponential, Weibull, log-logistic, log-normal, and the generalized gamma
using life insurance attrition data. Using the Akaike information criterion (AIC), the
generalized gamma is the best AFT model for the data. Also, we assessed the overall
goodness-of-fit of the model using the Cox-Snell residuals. Besides, we compared the
survival curve of the fitted parametric model with the nonparametric (KM) estimates.
In both these methods, the model showed a good fit. Furthermore, it is comparatively
easier to interpret and allows analysts to make predictions beyond the last survival time.
However, in the presence of time series covariates that are subject to seasonal variations,
the model tends to overestimate for early to mean lifetimes.
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Appendix

Table 6: Exponential AFT model

Covariate 54 TR (exp(B)) Sig. 95% CI (TR)
Gender Male [0] -0.0487 0.9524 0.003 0.9223 0.9836
Female [1]
Payment frequency infra annual [0] -0.1424 0.8673 0.0000 0.8328 0.903
annual [1]
other (supra annual) [2] 0.0809 1.0843 0.0056 1.024 1.148
Risk state smoker [0] 0.0691 1.0715 0.0001 1.0361 1.1085
non smoker [1]
Underwriting age young ( 0 to 34 years old ) [0]  0.0595 1.0613 0.001  1.0243 1.0995
middle (35 to 54 years old ) [1]
old ( 55 to 84 years old) [2] 01004  1.2007  0.0000 1.1526 1.27
Living place East coast [0]
West coast [1] 0.0275 1.0278 0.5266 0.9441 1.1185
other [2] 0.0073 1.0073 0.7206  0.968 1.0481
Accidental death rider Rider [0] 0.1251 1.1333 0.0000 1.0825 1.1865
Non Rider [1]
Annual premium -0.0839 0.9195 0.0000 0.9062 0.933
Dow Jones Index variation -0.6592 0.5172 0.0000 0.5086 0.5262
Unemployment rate -0.4095 0.664 0.0000 0.6531 0.675

Table 7: Weibull AFT model

Covariate 54 TR (exp(B))  Sig. 95% CI (TR)
Gender Male [0] -0.0503 0.951 0.0033 0.9196 0.9834
Female [1]
Payment frequency infra annual [0] -0.1477 0.8627 0.0000 0.8273 0.8996
annual [1] 1
other (supra annual) [2] 0.0843 1.088 0.0055 1.0251
Risk state smoker [0] 0.0716 1.0742 0.0001 1.0372 1.1125
non smoker [1]
Underwriting age young ( 0 to 34 years old ) [0] 0.062 1.0639 0.001 1.0254 1.1039
middle (35 to 54 years old ) [1]
old ( 55 to 84 years old) [2] 0.197 1.2177 0.0000 1.1582 1.2804
Living place East coast [0]
West coast [1] 0.029 1.0294 0.5205 0.9423 1.1247
other [2] 0.0077 1.0077 0.7148 0.9669 1.0503
Accidental death rider Rider [0] 0.1297 1.1385 0.0000 1.0855 1.1941
Non Rider [1]
Annual premium -0.087 0.9167 0.0000 0.9029 0.9308
Dow Jones Index variation -0.6789 0.5072 0.0000 0.4977 0.5168
Unemployment rate -0.4172 0.6589 0.0000 0.6472 0.6708
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Table 8: Log-logistic AFT model

Vol. 24 No. 2 (2020)

Covariate 54 TR (exp(8)) P-value 95% CI (TR)
Gender Male [0] -0.0668 0.9354 0.0008 0.8994 0.9727
Female [1]
Payment frequency infra annual [0] -0.1715 0.8424 0.0000  0.8027 0.8840
annual [1]
other (supra annual) [2] 0.1140 1.1207 0.0008 1.0483 1.1981
Risk state smoker [0] 0.0892 1.0933 0.0000 1.0496 1.1388
non smoker [1]
Underwriting age young ( 0 to 34 years old ) [0]  0.0837 1.0873 0.0002 1.0410 1.1357
middle (35 to 54 years old ) [1]
old ( 55 to 84 years old) [2] 0.2199 1.2460 0.0000 1.1762 1.3199
Living place East coast [0]
West coast [1] 0.0475 1.0487 0.3613  0.9469 1.1613
other [2] 0.0136 1.0137 0.5828 0.9656 1.0642
Accidental death rider Rider [0] 0.1493 1.1610 0.0000  1.0997 1.2258
Non Rider [1]
Annual premium -0.1168 0.8898 0.0000 0.8728 0.9071
Dow Jones Index variation -0.6670 0.5132 0.0000 0.5023 0.5244
Unemployment rate -0.4159 0.6598 0.0000 0.6459 0.6740

Table 9: Log-normal AFT model

Covariate B TR (exp(B))  Sig. 95% CI (TR)
Gender Male [0] -0.0721 0.9305 0.0017 0.8896 0.9732
Female [1]
Payment frequency infra annual [0] -0.1941 0.8236 0.0000 0.7795 0.8702
annual [1]
other (supra annual) [2] 0.1500 1.1618 0.0001 1.0766 1.2537
Risk state smoker [0] 0.1066 1.1124 0.0000 1.0617 1.1656
non smoker [1]
Underwriting age young ( 0 to 34 years old ) [0]  0.0819 1.0853 0.0013 1.0324 1.1409
middle (35 to 54 years old ) [1]
old ( 55 to 84 years old) [2] 0.2367 1.2670 0.0000 1.1865 1.3530
Living place East coast [0]
West coast [1] 0.0602 1.0621 0.3116 0.9451 1.1935
other [2] 0.0079 1.0080 0.7797 0.9534 1.0657
Accidental death rider Rider [0] 0.1771 1.1937 0.0000 1.1221 1.2698
Non Rider [1]
Annual premium -0.1393 0.8700 0.0000 0.8510 0.8894
Dow Jones Index variation -0.6942 0.4995 0.0000 0.4893 0.5099
Unemployment rate -0.3825 0.6822 0.0000 0.6668 0.6979
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