
The Journal of Risk Management and Insurance     Vol. 25  No. 1 (2021) 

1 
 

Lower and Upper Bounds of the Ultimate Ruin  

Probability in a Discrete Time Risk Model with  

Proportional Reinsurance and Investment 

 

Apichart Luesamai 

Phranakhon Rajabhat University, Bangkok, Thailand 

apichart.l@pnru.ac.th 

 

 

Received: February 4, 2021 

Revised: May 18, 2021 

Accepted: June 25, 2021 

 

Abstract 

The lower and upper bounds of the ultimate ruin probability in a discrete time risk model 

with proportional reinsurance and investment are determined under the assumption that the 

reinsurance retention level and the amount of investment in a particular stock during each 

time period can remain constant by employing the integral operator 𝐿. The lower bound is 

obtained from the finite time ruin probability that converges to the ultimate ruin probability 

with increasing time while the upper bound is iteratively determined by using Luesamai and 

Chongcharoen’s upper bound as the starting point. Besides, the ultimate ruin probability as 

a fixed point of 𝐿 is illustrated. 
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1 Introduction 

A well-known classical discrete time risk/surplus model for insurance assessment is 

specified as  

𝑈𝑛 = 𝑈𝑛−1 + 𝑐 − 𝑌𝑛,  𝑛 = 1,2,3, …, (1) 

where 𝑈𝑛 is the surplus at the end of time period 𝑛 (from 𝑛 − 1 to 𝑛) with initial constant 

𝑈0 = 𝑢  0; 𝑌𝑛 is the total claim amount during 𝑛, where 𝑌𝑛 are independent and identically 

distributed (i.i.d.) random variables with common distribution function 𝑃(𝑦) = 𝑃𝑟(𝑌𝑛 ≤ 𝑦), 

for 𝑦 ≥ 0; and 𝑐 is the constant premium income per unit time (Cai & Dickson, 2004; Lin, 

Dongjin, & Yanru, 2015).  Luesamai and Chongcharoen (2018) applied this model by adding 

proportional reinsurance as well as stock and bond investment factors; the output is defined 

as 

𝑈𝑛 = 𝑈𝑛−1(1 + 𝐼𝑛) + 𝛼𝑛𝑊𝑛 + 𝑐(𝑏𝑛) − ℎ(𝑏𝑛, 𝑌𝑛);  𝑛 = 1,2,3, …, (2) 

where 𝑏𝑛 ∈ (0,1] is the retention level of proportional reinsurance in one period. Function 

0 ≤ ℎ(𝑏𝑛, 𝑌𝑛) ≤ 𝑌𝑛 specifies the fraction of the total claim amount 𝑌𝑛 paid by the insurer, 

with 𝐺(𝑦) = 𝑃𝑟[ℎ(𝑏𝑛, 𝑌𝑛) ≤ 𝑦], and it also depends on reinsurance retention level 𝑏𝑛 at the 

beginning of the period. Hence, 𝑌𝑛 − ℎ(𝑏𝑛, 𝑌𝑛) is the part paid by the reinsurer. Reinsurance 

retention level 𝑏𝑛 = 1 means that there is no reinsurance. In this model, only proportional 

reinsurance is considered, which means that ℎ(𝑏𝑛, 𝑌𝑛) = 𝑏𝑛𝑌𝑛. Function 𝑐(𝑏𝑛), which is the 

premium retained by the insurer, is calculated as 𝑐 − 𝑐𝑟𝑒. By the expected value principle, the 

constant premium income is calculated as 𝑐 = (1 + 𝜃)𝐸(𝑌𝑛), where 𝜃 > 0 (the safety 

loading) is added by the insurer. The constant premium for the reinsurer is calculated 

as 𝑐𝑟𝑒 = (1 + 𝛿)𝐸[𝑌𝑛 − ℎ(𝑏𝑛, 𝑌𝑛)], where 𝛿 is the safety loading added by the reinsurer. 

Thus,  

𝑐(𝑏𝑛) = [(1 + 𝜃) − (1 + 𝛿)(1 − 𝑏𝑛)]𝐸(𝑌𝑛). (3) 

Furthermore, in (2), 𝐼𝑛 (the bond interest rate at time 𝑛) is assumed to follow a time-

homogeneous Markov chain, where 𝐼𝑛 = 𝑖𝑘, 𝑘 ∈ {0,1,2,3, … , 𝑑𝑛 = 𝑑} for all 𝑛 and where 𝐼0 

is known; 𝑊𝑛 (the gross return for the stock investment at time 𝑛) is assumed to be a 

sequence of i.i.d. nonnegative random variables with the distribution function 𝐹(𝑤) =
𝑃𝑟(𝑊𝑛 ≤ 𝑤), where 𝑤 ≥ 0; and 𝛼𝑛 is the amount of money that the insurer invests in stock 

at the beginning of the 𝑛𝑡ℎ period identified by using information from {𝐼𝑗and 𝑊𝑗: 𝑗 =

0,1,2, … , 𝑛 − 1}.  

Ruin probability is the probability that the insurer’s surplus falls below zero at some 

time in the future (Dickson, 2005). Thus, the ruin probability for a finite time period is given 

by (Jasiulewicz & Kordecki, 2015; Luesamai & Chongcharoen, 2018) 

𝜓𝑛(𝑢, 𝑖𝑠) = 𝑃𝑟{𝑈𝑘 < 0 for some 1 ≤ 𝑘 ≤ 𝑛|𝑈0 = 𝑢, 𝐼0 = 𝑖𝑠}  

 

                = 𝑃𝑟{⋃ (𝑈𝑘 < 0)|𝑈0 = 𝑢, 𝐼0 = 𝑖𝑠
𝑛
𝑘=1 }, 

(4) 

while the ultimate ruin probability is given by 
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𝜓(𝑢, 𝑖𝑠)  = 𝑃𝑟{𝑈𝑘 < 0 for some 𝑘 ≥ 1|𝑈0 = 𝑢, 𝐼0 = 𝑖𝑠}   

 

               = 𝑃𝑟{⋃ (𝑈𝑘 < 0)|𝑈0 = 𝑢, 𝐼0 = 𝑖𝑠
∞
𝑘=1 }. 

(5) 

Clearly, 𝜓1(𝑢, 𝑖𝑠) ≤ 𝜓2(𝑢, 𝑖𝑠) ≤ 𝜓3(𝑢, 𝑖𝑠) ≤ ⋯ and 

lim
𝑛→∞

𝜓𝑛(𝑢, 𝑖𝑠) = 𝜓(𝑢, 𝑖𝑠). (6) 

According to the previously mentioned assumptions and the Lundberg coefficient 

(adjustment coefficient), 𝑟0 of the classical risk model exists. The 𝑟0 is the smallest positive 

value of real variable 𝑟 satisfying the equation  

𝑀𝑌𝑛−𝑐(𝑟) = 𝐸[𝑒𝑟(𝑌𝑛−𝑐)] = 1. (7) 

Luesamai and Chongcharoen (2018) showed that if the retention level of reinsurance (𝑏𝑛) and 

the amount of investment in stock (𝛼𝑛) in each time period for the risk model in (2) are set as 

constant values, i.e. 

𝑈𝑛 = 𝑈𝑛−1(1 + 𝐼𝑛) + 𝛼𝑊𝑛 + 𝑐(𝑏) − 𝑏𝑌𝑛;  𝑛 = 1,2,3, …, (8) 

the upper bound of the ruin probability in (4) and (5) will become 

𝜓𝑛+1(𝑢, 𝑖𝑠) ≤  𝜓(𝑢, 𝑖𝑠) ≤ 𝛽0𝐸(𝑒−𝑟0[𝑢(1+𝐼1)+𝛼𝑊1]|𝐼0 = 𝑖𝑠), (9) 

where 

𝛽0
−1 = inf

𝑚≥0

∫ 𝑒𝑟0𝑦𝑑𝐺(𝑦)
∞

𝑚

𝑒𝑟0𝑚𝐺̅(𝑚)
. 

(10) 

In this study, a new lower bound and an upper bound based on the assumptions of 

Luesamai and Chongcharoen (2018) are provided by applying the methodology of iteration 

and the integral operator 𝐿 (Gajek, 2005; Rudź, 2015) which is defined as follows. 

Let ℛ be the set of all non-increasing functions defined on [0, ∞) and taking values from 
[0,1]. Function 𝐿: ℛ → ℛ is said to be an integral operator generated by the risk model {𝑈𝑛} 

defined in (8) when 

𝐿𝑅(𝑢, 𝑖𝑠) = ∑ 𝑝𝑠𝑡 ∫ ∫ 𝑅[𝑢(1 + 𝑖𝑡) + 𝛼𝑤 − 𝑧(𝑦), 𝑖𝑡]𝑑𝐺(𝑦)𝑑𝐹(𝑤)

𝜋

0

∞

0

𝑑

𝑡=0

  

 

+ ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤),

∞

0

𝑑

𝑡=0

 

(11) 

where 𝑧(ℎ(𝑏, 𝑌1)) = ℎ(𝑏, 𝑌1) − 𝑐(𝑏) and 𝜋 = 𝑢(1 + 𝑖𝑡) + 𝛼𝑤 + 𝑐(𝑏) are defined. These 

definitions are used throughout the paper. Obviously, 𝐿 is monotone; i.e.,  

𝐿𝑅(𝑢, 𝑖𝑠) ≤ 𝐿𝑆(𝑢, 𝑖𝑠), (12) 

for all 𝑅(𝑢, 𝑖𝑠) ≤ 𝑆(𝑢, 𝑖𝑠), where 𝑢, 𝑖𝑠 ≥ 0. 
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2 Iteratively determining the lower and upper bounds 

In this section, the lower and upper bounds are derived by using the integral operator 

𝐿 adapted from the one defined by Gajek (2005). Under the assumptions that the retention 

level of reinsurance and the amount of investment in stock in each time period for the risk 

model in (2) are set as constant values (i.e., 𝑏𝑛 = 𝑏 and 𝛼𝑛 = 𝛼, for all 𝑛 = 1,2,3, …), then 

the lower bound is provided by Theorem 1. Moreover, the upper bound for the ruin 

probability provided in Theorem 2 is iteratively obtained by using Luesamai and 

Chongcharoen’s (2018) upper bound as the starting point.   

Theorem 1: Let 𝐿 be the integral operator defined in (11), and the ruin probability for a finite 

time, 𝜓𝑛(𝑢, 𝑖𝑠), be defined in (4) for the risk model in (8). Then 

(i) for all 𝑢, 𝑖𝑠 ≥ 0, it holds that 

𝜓𝑛(𝑢, 𝑖𝑠) = 𝐿𝑛−1 𝜓1(𝑢, 𝑖𝑠), (13) 

where 𝜓1(𝑢, 𝑖𝑠) = ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)
∞

0
𝑑
𝑡=0  and  𝐿0 denotes the identity operator, and 

(ii) the ultimate ruin probability, 𝜓(𝑢, 𝑖𝑠), is a fixed point of 𝐿; i.e., 

𝜓(𝑢, 𝑖𝑠) = 𝐿𝜓(𝑢, 𝑖𝑠). (14) 

Proof 

(i) For 𝑛 = 1, the result obviously holds because  𝐿0 is the identity operator; i.e., 

𝜓1(𝑢, 𝑖𝑠) = 𝐿0 𝜓1(𝑢, 𝑖𝑠). 

Assuming that (13) is true for some 𝑛 ∈ 𝑁, then consider that when 𝑛 + 1, the result 

holds as  

𝜓𝑛+1(𝑢, 𝑖𝑠) = ∑ 𝑝𝑠𝑡 ∫ ∫ 𝜓𝑛

𝜋

0

∞

0

𝑑

𝑡=0
[𝑢(1 + 𝑖𝑡) + 𝛼𝑤 − 𝑧(𝑦), 𝑖𝑡]𝑑𝐺(𝑦)𝑑𝐹(𝑤) 

 

 

+ ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

 

 

 = 𝐿𝜓𝑛(𝑢, 𝑖𝑠)  

 = 𝐿𝐿𝑛−1 𝜓1(𝑢, 𝑖𝑠)  

 = 𝐿𝑛 𝜓1(𝑢, 𝑖𝑠).  
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(ii)  

  𝜓(𝑢, 𝑖𝑠) = lim
𝑛→∞

𝜓𝑛+1(𝑢, 𝑖𝑠)  

 = lim
𝑛→∞

∑ 𝑝𝑠𝑡 ∫ ∫ 𝜓𝑛

𝜋

0

[𝑢(1 + 𝑖𝑡) + 𝛼𝑤 − 𝑧(𝑦), 𝑖𝑡]𝑑𝐺(𝑦)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

  

    + ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

  

 = ∑ 𝑝𝑠𝑡 ∫ ∫ 𝜓

𝜋

0

[𝑢(1 + 𝑖𝑡) + 𝛼𝑤 − 𝑧(𝑦), 𝑖𝑡]𝑑𝐺(𝑦)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

  

    + ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

 (by using Lebesgue’s dominated convergence theorem) 

 = 𝐿𝜓(𝑢, 𝑖𝑠).  

Thus, 𝜓(𝑢, 𝑖𝑠) = 𝐿𝜓(𝑢, 𝑖𝑠), i.e. 𝜓(𝑢, 𝑖𝑠) is a fixed point of the operator 𝐿. 

Theorem 2: Assume that 𝑟0 in (7) exists. Let 𝑅0(𝑢, 𝑖𝑠) = 𝛽0𝐸(𝑒−𝑟0[𝑢(1+𝐼1)+𝛼𝑊1]|𝐼0 = 𝑖𝑠) 

where 𝛽0 is the inverse of (10). Then the sequence of iterations 𝑅𝑛(𝑢, 𝑖𝑠) = 𝐿𝑛 𝑅0(𝑢, 𝑖𝑠) is a 

non-increasing sequence of functions in ℛ which converge monotonically from above to a 

fixed point of 𝐿.
 

Proof 

For 𝑛 = 1, 𝑅1(𝑢, 𝑖𝑠) from 𝑅0(𝑢, 𝑖𝑠) ∈  ℛ and 𝐿 (its monotonicity will be use below) becomes 

  𝑅1(𝑢, 𝑖𝑠) = 𝐿𝑅0(𝑢, 𝑖𝑠) 

 

 
= ∑ 𝑝𝑠𝑡 ∫ ∫ 𝑅0[𝑢(1 + 𝑖𝑡) + 𝛼𝑤 − 𝑧(𝑦), 𝑖𝑡]𝑑𝐺(𝑦)𝑑𝐹(𝑤)

𝜋

0

∞

0

𝑑

𝑡=0

 

    + ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

 

 = ∑ 𝑝𝑠𝑡 ∫ ∫ 𝛽0𝐸(𝑒−𝑟0[{𝑢(1+𝑖𝑡)+𝛼𝑤−𝑧(𝑦)}(1+𝐼1)+𝛼𝑊1]|𝐼0 = 𝑖𝑡)𝑑𝐺(𝑦)𝑑𝐹(𝑤)

𝜋

0

∞

0

𝑑

𝑡=0

 

     + ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0
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 ≤ ∑ 𝑝𝑠𝑡 ∫ ∫ 𝛽0𝑒−𝑟0{𝑢(1+𝑖𝑡)+𝛼𝑤−𝑧(𝑦)}𝑑𝐺(𝑦)𝑑𝐹(𝑤)

𝜋

0

∞

0

𝑑

𝑡=0

 

    + ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

. (15) 

Consider 𝐺̅(𝑚) = (
∫ 𝑒𝑟0𝑦𝑑𝐺(𝑦)

∞

𝑚

𝑒𝑟0𝑚𝐺̅(𝑚)
)

−1

𝑒−𝑟0𝑚 ∫ 𝑒𝑟0𝑦𝑑𝐺(𝑦)

∞

𝑚

  

 ≤ 𝛽0𝑒−𝑟0𝑚 ∫ 𝑒𝑟0𝑦𝑑𝐺(𝑦),

∞

𝑚

  where 𝛽0
−1 = inf

𝑚≥0

∫ 𝑒𝑟0𝑦𝑑𝐺(𝑦)
∞

𝑚

𝑒𝑟0𝑚𝐺̅(𝑚)
. (16) 

By replacing (16) in (15), we obtain  

𝑅1(𝑢, 𝑖𝑠) ≤ ∑ 𝑝𝑠𝑡 ∫ ∫ 𝛽0𝑒−𝑟0{𝑢(1+𝑖𝑡)+𝛼𝑤−𝑧(𝑦)}𝑑𝐺(𝑦)𝑑𝐹(𝑤)

𝜋

0

∞

0

𝑑

𝑡=0

  

 + ∑ 𝑝𝑠𝑡 ∫ 𝛽0𝑒−𝑟0[𝑢(1+𝑖𝑡)+𝛼𝑤+𝑐(𝑏)] ∫ 𝑒𝑟0𝑦𝑑𝐺(𝑦)

∞

𝜋

𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

  

 = ∑ 𝑝𝑠𝑡 ∫ 𝛽0𝑒−𝑟0{𝑢(1+𝑖𝑡)+𝛼𝑤+𝑐(𝑏)} ∫ 𝑒𝑟0𝑦𝑑𝐺(𝑦)

∞

0

𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

  

 = ∑ 𝑝𝑠𝑡 ∫ 𝛽0𝑒−𝑟0{𝑢(1+𝑖𝑡)+𝛼𝑤+𝑐(𝑏)}𝐸(𝑒𝑟0ℎ(𝑏,𝑌1))𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

  

 = 𝛽0𝐸(𝑒−𝑟0[𝑐(𝑏)−ℎ(𝑏,𝑌1)])𝐸(𝑒−𝑟0[𝑢(1+𝐼1)+𝛼𝑊1]|𝐼0 = 𝑖𝑠)  

 = 𝛽0𝐸(𝑒−𝑟0[𝑢(1+𝐼1)+𝛼𝑊1]|𝐼0 = 𝑖𝑠) (Diasparra and Romera, 2009, p.102) 

 = 𝑅0(𝑢, 𝑖𝑠).  

Assume that 𝑅𝑛(𝑢, 𝑖𝑠) =  𝐿𝑛𝑅0(𝑢, 𝑖𝑠) ≤ 𝐿𝑛−1𝑅0(𝑢, 𝑖𝑠) = 𝑅𝑛−1(𝑢, 𝑖𝑠). 

Thus, for 𝑛 + 1, the result holds as follows: 

𝑅𝑛+1(𝑢, 𝑖𝑠) =  𝐿𝑅𝑛(𝑢, 𝑖𝑠)  

   𝐿𝐿𝑛−1 𝑅0(𝑢, 𝑖𝑠)  

 = 𝐿𝑛 𝑅0(𝑢, 𝑖𝑠)  
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 = 𝑅𝑛(𝑢, 𝑖𝑠).  

Hence, {𝑅𝑛} is a non-increasing sequence of functions in ℛ that is bounded from 

below by 0. Consequently, the pointwise limit of 𝑅𝑛(𝑢, 𝑖𝑠) can be obtained as 𝑅∗(𝑢, 𝑖𝑠), such 

that 

𝑅∗(𝑢, 𝑖𝑠) = lim
𝑛→∞

𝑅𝑛+1(𝑢, 𝑖𝑠) 

 

 
= lim

𝑛→∞
∑ 𝑝𝑠𝑡 ∫ ∫ 𝑅𝑛[𝑢(1 + 𝑖𝑡) + 𝛼𝑤 − 𝑧(𝑦), 𝑖𝑡]𝑑𝐺(𝑦)𝑑𝐹(𝑤)

𝜋

0

∞

0

𝑑

𝑡=0

 

 
   + ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

 

 
 = ∑ 𝑝𝑠𝑡 ∫ ∫ 𝑅∗[𝑢(1 + 𝑖𝑡) + 𝛼𝑤 − 𝑧(𝑦), 𝑖𝑡]𝑑𝐺(𝑦)𝑑𝐹(𝑤)

𝜋

0

∞

0

𝑑

𝑡=0

 

 

+ ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤)

∞

0

𝑑

𝑡=0

 (by using Lebesgue’s dominated convergence theorem) 

  = 𝐿𝑅∗(𝑢, 𝑖𝑠).  

Thus, 𝑅∗(𝑢, 𝑖𝑠) = 𝐿𝑅∗(𝑢, 𝑖𝑠), i.e. 𝑅∗(𝑢, 𝑖𝑠) is a fixed point of the operator 𝐿. 

3 Numerical examples 

Here, two numerical examples are presented to show the efficacy of applying the 

bounds provided in the previous section. In Example 1, the total claim amounts are assumed 

to be i.i.d. exponential. Application of iterative lower and upper bounds proposed in the 

previous section and the upper bound derived by Luesamai and Chongcharoen (2018) is 

illustrated for various amounts of initial surplus 𝑢. In Example 2, the total claim amounts are 

assumed to be i.i.d. normal. Application of iterative bounds derived in the previous section 

and the upper bound derived by Luesamai and Chongcharoen (2018) are presented for 

different values of 𝑏 and 𝛼, where 𝑏 is the constant value assigned to the retention level of 

reinsurance in each time period 𝑏𝑛 and 𝛼 is the constant value assigned to the amount of 

money invested in stock in each time period 𝛼𝑛. 

 

Example 1: For all 𝑛 = 1,2,3, …, suppose that the total claim amount during period 𝑛 is  

𝑌𝑛~𝑒𝑥𝑝(1.25), the bond interest rate at time 𝑛 is 𝐼𝑛 ∈ {0.01,0.015,0,02} with transition 

probability matrix  

[
0.4 0.4 0.2
0.4 0.3 0.3
0.5 0.3 0.2

], 
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and 𝐼0 = 0.015, and the gross stock return at time 𝑛 is given by 𝑊𝑛 = 𝑒
(𝜇−

𝜎2

2
)+𝜎𝐵𝑛 , where 

𝐵𝑛~𝑁(0,1), 𝜇 = 0.9, and 𝜎 = 0.2. The safety loading values given by the insurer (𝜃) and the 

reinsurer (𝛿) were assumed to be 10% and 11%, respectively. The policies for the reinsurance 

and the amount of investment in stock are assumed to be the same in each time period (i.e., 

𝑏𝑛 = 𝑏 = 0.7 and 𝛼𝑛 = 𝛼 = 0.005, for all 𝑛 = 1,2,3, …).  

The graphs of 𝑅1(𝑢, 𝑖𝑠), 𝑅2(𝑢, 𝑖𝑠), 𝑅3(𝑢, 𝑖𝑠) and 𝜓1(𝑢, 𝑖𝑠), 𝜓2(𝑢, 𝑖𝑠), 𝜓3(𝑢, 𝑖𝑠) are 

illustrated in Figure 1.  

 

Figure 1: The first three iteratively determined upper (𝑅𝑛(𝑢, 𝑖𝑠)) and lower (𝜓𝑛(𝑢, 𝑖𝑠)) 

bounds of the ultimate ruin probability together with Luesamai and Chongcharoen’s (2018) 

upper bound for varying initial surplus 𝑢. 

It can be seen that the proposed upper bound sequence (𝑅𝑛(𝑢, 𝑖𝑠)) was less than 

Luesamai and Chongcharoen’s (2018) upper bound (𝑅0(𝑢, 𝑖𝑠))  and decreased as 𝑛 increased 

and initial surplus 𝑢 increased. Meanwhile, the lower bound sequence  (𝜓𝑛(𝑢, 𝑖𝑠))  increased 

when 𝑛 increased but decreased when 𝑢 increased. 

Example 2: For all 𝑛 = 1,2,3, …, suppose that the total claim amount during period 𝑛 is  

𝑌𝑛~𝑁(5, (1.2)2), the bond interest rate at time 𝑛 is 𝐼𝑛 ∈ {0.01,0.015,0,02} with transition 

probability matrix  

[
0.4 0.4 0.2
0.4 0.3 0.3
0.5 0.3 0.2

], 

and 𝐼0 = 0.015. Meanwhile, the gross stock return at time 𝑛 is 𝑊𝑛 = 𝑒
(𝜇−

𝜎2

2
)+𝜎𝐵𝑛

, where 

𝐵𝑛~𝑁(0,1), 𝜇 = 0.9, and 𝜎 = 0.2. The safety loading amounts given by the insurer (𝜃) and 

the reinsurer (𝛿) were assumed to be 10% and 11%, respectively, and the initial surplus value 

was set as 𝑢 =14. The policies of the reinsurance and the amount of investment in stock were 

assumed to be the same in each time period (i.e., 𝑏𝑛 = 𝑏 and 𝛼𝑛 = 𝛼, for all 𝑛 = 1,2,3, …).  
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The values of the ruin probability for a finite time period 𝜓𝑛(𝑢, 𝑖𝑠) and the sequence 

of 𝑅𝑛(𝑢, 𝑖𝑠), where 𝑛 = 1,2,3, are reported in Table 1 for 𝑏 = 0.6, 0.8, 1 and 𝛼 =
0.05, 0.1, 0.2.  

Table 1: The first three iteratively obtained upper and lower bounds of ultimate ruin 

probability  𝜓(𝑢, 𝑖𝑠) are illustrated together with Luesamai and Chongcharoen’s (2018) upper 

bound for varying retention level of reinsurance 𝑏 and amount of investment in stock 𝛼. 

𝑏 𝛼 

The Proposed Iteratively Obtained Bounds Luesamai and 

Chongcharoen’s 

(2018) Upper 

Bound 

Lower Bound Upper Bound 

𝜓1(𝑢, 𝑖𝑠) 𝜓2(𝑢, 𝑖𝑠) 𝜓3(𝑢, 𝑖𝑠) … … 𝑅3(𝑢, 𝑖𝑠) 𝑅2(𝑢, 𝑖𝑠) 𝑅1(𝑢, 𝑖𝑠) 

0.6 0.05 2.792e-91 4.583e-74 9.167e-74 … … 1.20427e-07 1.20425e-07 1.20424e-07 1.85788e-07 

 0.1 1.523e-92 4.091e-76 8.183e-76 … … 9.25554e-08 9.25542e-08 9.25530e-08 1.62847e-07 

 0.2 8.982e-95 1.494e-79 2.989e-79 … … 5.51173e-08 5.51166e-08 5.51159e-08 1.25374e-07 

0.8 0.05 3.810e-53 9.604e-51 1.924e-50 … … 2.49451e-06 2.49447e-06 2.49444e-06 3.57987e-06 

 0.1 6.483e-54 3.967e-52 8.000e-52 … … 2.02816e-06 2.02813e-06 2.02811e-06 3.22808e-06 

 0.2 2.469e-55 1.679e-54 3.605e-54 … … 1.34753e-06 1.34751e-06 1.34749e-06 2.62820e-06 

1.0 0.05 2.789e-35 2.790e-35 8.369e-35 … … 1.21331e-05 1.21329e-05 1.21328e-05 1.66624e-05 

 0.1 8.508e-36 8.509e-36 2.552e-35 … … 1.02342e-05 1.02340e-05 1.02339e-05 1.53051e-05 

 0.2 8.974e-37 8.974e-37 2.692e-36 … … 7.30661e-06 7.30651e-06 7.30642e-06 1.29244e-05 

 

It can be seen that the values of the proposed lower bound (𝜓𝑛(𝑢, 𝑖𝑠)) and upper 

bound (𝑅𝑛(𝑢, 𝑖𝑠)) increased when retention level value 𝑏 increased and also decreased when 

the amount of investment in stock 𝛼, increased. The other trends support the conclusions 

drawn for Example 1, where  𝜓𝑛(𝑢, 𝑖𝑠) increased and 𝑅𝑛(𝑢, 𝑖𝑠) decreased as 𝑛 increases and 

𝑅𝑛(𝑢, 𝑖𝑠) was lower than Luesamai and Chongcharoen’s (2018) upper bound. 

4 Conclusions 

We applied both Gajek’s (2005) and Rudź’s (2015) operator approaches to iteratively 

determine the lower and upper bounds of the ultimate ruin probability, 𝜓(𝑢, 𝑖𝑠), in a discrete 

time risk model with proportional reinsurance and investment first presented by Luesamai 

and Chongcharoen (2018). The algorithm is based on iterating the integral operator 𝐿 which 

is defined in (11). The bounds were constructed under the assumption that the retention level 

of reinsurance and the amount of investment in stock in each time period for the risk model 

are set as constant values (i.e., 𝑏𝑛 = 𝑏 and 𝛼𝑛 = 𝛼, for all 𝑛 = 1,2,3, …). The ruin probability 

for a finite time, 𝜓𝑛(𝑢, 𝑖𝑠), can be provided in terms of the integral operator 𝐿 as 𝜓𝑛(𝑢, 𝑖𝑠) =

𝐿𝑛−1 𝜓1(𝑢, 𝑖𝑠) where 𝜓1(𝑢, 𝑖𝑠) = ∑ 𝑝𝑠𝑡 ∫ 𝐺̅(𝜋)𝑑𝐹(𝑤).
∞

0
𝑑
𝑡=0  Since 𝜓𝑛(𝑢, 𝑖𝑠) monotonically 

increases from 𝜓1(𝑢, 𝑖𝑠) to 𝜓(𝑢, 𝑖𝑠) as 𝑛 increases, 𝜓𝑛(𝑢, 𝑖𝑠) can be interpreted as the lower 

bound of ultimate ruin probability. The upper bound of ultimate ruin probability is 

𝑅𝑛(𝑢, 𝑖𝑠) = 𝐿𝑛 𝑅0(𝑢, 𝑖𝑠), where 𝑅0(𝑢, 𝑖𝑠) is Luesamai and Chongcharoen’s (2018) upper 

bound. When 𝑛 increases, 𝑅𝑛(𝑢, 𝑖𝑠) monotonically decreases from 𝑅0(𝑢, 𝑖𝑠) to 𝜓(𝑢, 𝑖𝑠). 

Besides, we showed that the ultimate ruin probability is a fixed point of 𝐿; i.e., 𝜓(𝑢, 𝑖𝑠) =
𝐿𝜓(𝑢, 𝑖𝑠). 
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