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Abstract 

 
In the light of the not-too-distant ago financial crisis that brought the interconnectedness of 

financial risks into focus, this paper set out to evaluate the economic capital of the non-life 

insurance industry in Ghana by evaluating the total risk exposure of the industry via value at 

risk and conditional value at risk. The paper employed the copula-based ARMA-GARCH model 

on quarterly premium, claims and asset data of the Ghanaian non-life insurance industry 

spanning the period 2012Q4 to 2020Q4. All lines of business in the non-life insurance industry 

in Ghana were considered and predictions were made for the next 8 quarters of the data. It 

was found that over the quarters in 2021 and 2022, there is a 5% chance that in each quarter 

the industry will lose more than 64% of its entire portfolio and that should extreme events 

trigger such losses then it should be expected that losses will amount to about 80% of the 

industry portfolio. It was further found that there is a 1% chance in each of the quarters from 

2021 to 2022, that the non-life insurance industry’s portfolio will be wiped out. Such an event, 

though as remote as 1 out of 100, can have dire consequences for the economy and financial 

sector and therefore the non-life insurance industry is one area of the Ghanaian financial 

sector that must be closely monitored to avert any such catastrophe. 

 

Keywords: Copulas, Conditional Value-at-Risk, Economic Capital, Non-life Insurance, 

Value-at-Risk 
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1 Introduction 
 

The recent financial crisis has brought into focus the connectedness of market risk, 

credit risk, and operational risk such that these three risks may act simultaneously to precipitate 

catastrophic losses if they are not properly managed (Slepov et al., 2019; Shim & Lee, 2017; 

Mejdoub & Arab, 2017). The increasing complexity of the insurance markets with products 

that were hitherto unavailable requires that extreme risks need to be properly managed now 

more than ever if firm sustainability is to be achieved on a going basis (Eling, Nuessle, & 

Staubli, 2022; Goovaerts, Kaas & Laeven, 2010). A distressed insurer may translate to a 

distressed client by virtue of the insurer’s impaired ability to deliver on insurance promises 

which in turn may have a greater macroeconomic impact (Slepov et al., 2019; Diers, Eling & 

Marek, 2012).  

 

An implication of the Solvency II directive is the identification of the overall loss 

distribution of an insurer as the paradigm shift is now toward economic risk-based approaches 

to ensuring solvency in financial undertakings (Leković, 2018; Skoglund, 2010). This has 

engendered the need to manage risk holistically and not in silos thereby requiring aggregation 

of total risk exposures. To this end, the dependencies between individual lines of risk are very 

important since it feeds directly into the result of risk aggregation. With the neglect of the exact 

nature of these dependencies, the insurer may either assume total independence or complete 

dependence among these risks. The first case will lead to underestimation of the total risk faced 

by the insurer thus leaving it with inadequate protection against extreme events while the 

second case will overestimate the total risk of the insurer and may therefore incur too high 

capital costs (Marti et al., 2021; Bi & Cai, 2019; Lin, Sun, & Yu, 2018; Braun, Schmeiser & 

Schreiber, 2015; Kretzschmar, McNeil & Kirchner, 2010). “The Solvency II draft directive 

acknowledges this fact and proposes recognition of dependencies by the use of linear 

correlations” but for adequate loss aggregation deriving from various risk classes, and therefore 

an accurate calculation of total risk capital, existing stochastic dependencies between risk-

specific losses have to be adopted by integrated risk management approaches (Marti, et al., 

2021; Lin, et al., 2018; Grundke,2010; Kretzschmar, McNeil & Kirchner, 2010).  

 

In compliance with the International Association of Insurance Supervisors (IAIS), at 

any point in time, the assets of an insurance company should be 150% of its liabilities or its net 

assets should be at least equal to the minimum capital requirement for solvency to hold 

(Mukhtarov, Schoute, & Wielhouwer, 2022). The regulator of the Ghanaian insurance industry, 

the National Insurance Commission, has recently more than tripled the regulatory capital 

required of insurers from GH¢15million to GH¢50million effective the end of June 2021 (NIC, 

2021).  

 

This paper, therefore, aims to present a model for evaluating the economic capital of 

the insurance industry in Ghana and specifically investigate the economic capital of the non-

life insurance industry to provide a basis of comparison to the regulatory capital requirement. 

 

In so doing, this paper contributes to the extant literature on the modeling of non-linear 

dependencies with application to the non-life insurance industry in the aggregation of 

interdependent risks using copulas. 

 

In the following section of this paper, economic capital, value-at-risk (VaR), and 

copulas are explained. This is followed by a section explaining the methodology used in the 
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paper followed by a section presenting and discussing the results of this study. A final 

concluding section then follows with the conclusions and recommendations from this study. 

 

2 Literature Review 

 
The recent financial crisis brought to the fore the interconnectedness of risks and has 

engendered an upsurge in the integrated risk management process that involves a holistic view 

of aggregate risks. One area that is receiving attention is the non-linear dependencies of the 

financial risks and the modeling of these dependencies using copulas (see Araichi, & 

Almulhim, 2021; Mejoub & Ben Arab, 2017). This section reviews the empirical literature 

relevant to using copulas in the estimation of risk capital. 

 

2.1  Economic Capital and VAR 

 

Economic capital for an insurer is that extra financial capacity required to cushion its 

insurance business in the event that underwriting losses exceed expectations or returns on 

investments fall below expectations, such that, even in such an adverse condition the insurer 

will still be able to continue its business (Furman, Hackman, & Kuznetsov, 2020; Tang & 

Valdez, 2009). Thus, economic capital is supposed to be a “rainy day fund, so when bad things 

happen, there is money to cover it.” In this vein, Kretzschmar, McNeil, and Kirchner (2010) 

note that “economic capital is the amount of capital required by a financial firm in order to 

function as a solvent entity at a stated confidence level over a given time period considering 

the risk profile of the firm” (Kretzschmar, McNeil & Kirchner, 2010).  

 

Whereas regulatory capital is the minimum capital required by regulation to be kept by 

insurers, economic capital on the other hand embodies all the actual risk exposures of the 

insurer and as Shim and Lee put it “because economic capital is the level of capital that the 

firm should hold to maintain its probability of default below a certain threshold, economic 

capital can be viewed as the Value-at-Risk (VaR) at a given confidence level” (Yan, Zhengyin, 

& Yuna, 2019; Shim & Lee, 2017). 

 

At a given confidence level, VaR reports how much is required to be able to manage 

risk exposure of a portfolio over a specified time horizon thus when the VaR indicates that over 

the next time horizon there is an alpha probability that loses will exceed the VaR, it means 

there is a 1-alpha confidence that the VaR is all that is needed to manage loses over the next 

time horizon (Hasnaoui, 2018).  

 

VaR has taken preeminence in the quantification of risk especially in financial risk 

management by both practitioners and regulators in recent times (Omari & Mwita, 2018). It is 

a quantile measure that defines the maximum loss due to a change in asset value over a given 

period with a given confidence level. VaR is easy to compute for single variables such as the 

return on a single asset but becomes increasingly complex when multiple asset portfolios are 

considered due to the dependency of asset distributions to consider in evaluating the VaR. 

 

For a portfolio made up of multiple assets, VaR can be mathematically defined as 

 

𝑉𝑎𝑅𝑞(𝐿) = inf{𝑙 ∈ 𝑅: 𝑃(𝐿 > 𝑙) ≤ 1 − 𝑞 } = inf {𝑙 ∈ 𝑅: 𝐹𝐿(𝑙) ≥ 𝑞} 
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where 𝑞 ∈ (0,1) is a given confidence level, 𝐿 is the portfolio loss and 𝑙 is the smallest number 

such that the probability that 𝐿 exceeds 𝑙 is no greater than 1 − 𝑞 (Omari & Mwita, 2018). 

Thus, in its simplest form, VaR is the q-quantile of the loss distribution data if such data is 

readily available. 

 

VaR of an 𝑛-asset portfolio can be evaluated by the traditional variance-covariance 

method as  

𝜎𝑝,𝑡
2 = [𝑤1 … 𝑤𝑛] [

𝜎1,𝑡
2 ⋯ 𝜎1𝑛,𝑡

⋮ ⋱ ⋮
𝜎𝑛1,𝑡 ⋯ 𝜎𝑛,𝑡

2
] [

𝑤1

⋮
𝑤𝑛

] 

 

𝑉𝑎𝑅𝑝,𝑡(𝛼) = 𝜎𝑝,𝑡. 𝑍𝛼 + µ𝑝,𝑡 

 

where µ𝑝,𝑡is portfolio return at time 𝑡 and  𝜎𝑝,𝑡
2 is variance of portfolio returns at time 𝑡 but this 

formula assumes the assets are multivariate normal and linearly correlated (Huang, Lee, Liang 

& Lin, 2009). 

 

The reality of fatter tails stylized fact in financial time series violates the linear 

correlation assumptions employed in the traditional models of evaluating the VaR and has thus 

been shown in empirical literature that the assumption of linear correlation does not provide 

adequate results when evaluating VaR due to stylized facts of financial time-series such as 

excess kurtosis, asymmetry, and leverage among others since VaR is mostly concerned with 

the tails of the distributions (Arif et al., 2021; Chen, Nguyen, & Stadie, 2018; Nguyen & 

Molinari, 2011). 

 

A risk metric related to the VaR is the conditional value-at-risk (CVaR). The CVaR 

indicates the expectation of losses in case the loss experience goes beyond the VaR. That is 

 

𝐶𝑉𝑎𝑅𝑞(𝐿) = 𝐸[𝐿: 𝐿 ≥ 𝑉𝑎𝑅𝑞(𝐿)] 

 

The correlations between asset returns have been found to be dynamic and not static, 

with higher correlation observed during volatile market periods and downturns in the market 

than during calm market conditions (Chen, Nguyen, & Stadje, 2018). This goes to show that 

extreme risk events may occur with a higher correlation between asset returns than normal risk 

events and such asymmetries cannot be properly modeled by symmetric distributions such as 

the Gaussian (Arif et al., 2021; Embrechts, McNeil & Straumann, 2002), therefore, aggregating 

risks with linearity and normality assumptions will produce inadequate aggregated risk 

estimates. 

 

To overcome these problems, this paper resorts to the copula theory which allows for 

the construction of flexible multivariate distributions with different marginals and different 

dependency structures allowing the joint distribution of a portfolio to be free from any 

normality and linear correlation assumptions.  

 

2.2  Copulas 

 

Copulas have recently become a most significant new tool in the field of finance in 

terms of risk management, portfolio allocation, and derivative asset pricing, among others. A 

copula is a function with a specific dependence structure that connects a joint distribution to 
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univariate marginals irrespective of the individual marginal distributions. This enables the 

creation of a probability distribution to model dependent marginal distributions. The 

dependence measures derived from copulas can overcome the shortcomings of the linearity 

assumptions in the traditional risk aggregation techniques and have broader applications. This 

is because copulas can be used to describe more complex multivariate dependence structures, 

such as non-linear tail dependence (Puccetti, 2019; Eling, & Jung, 2018). 

 

Haugh (2016) defines a d-dimensional copula, C: [0, 1] d: → [0, 1] as a cumulative 

distribution function (CDF) with uniform marginals and according to Sklar (1959) theorem if 

we consider a 𝑑-dimensional CDF, 𝐹 , with marginals 𝐹1, … , 𝐹𝑑, there exists a copula, 𝐶, such 

that 

𝐹(𝑥1, … , 𝑥𝑑) = 𝐶(𝐹1(𝑥1), … , 𝐹𝑑(𝑥𝑑)) ∀ 𝑥𝑖 ∈ [−∞, ∞]  ∧  𝑖 = 1, … , 𝑑. 
 

Now if we assume that 𝑋𝑖 is a random return variable that has a marginal distribution 

 

𝐹𝑖(𝑋) = 𝑃(𝑋𝑖 ≤ 𝑥) 

 

and let µ𝑖 be the observed value of 𝐹𝑖(𝑋𝑖) then for continuous univariate marginals, the unique 

copula function is given by 

 

𝐶(µ1, … , µ𝑛) = 𝐹(𝐹1
−1(µ1), … , 𝐹𝑛

−1(µ𝑛)) 

 

where 𝐹1
−1, … , 𝐹𝑛

−1are the quantile functions of the univariate marginals, 𝐹1, … , 𝐹𝑛. 

 

Empirical studies using copulas note that tail dependencies in financial literature has 

been shown to be better modelled by copulas instead of correlations (see Rosenberg & 

Schureman, 2006) but at times the choice of the copula to use may be difficult as noted by 

Grundke (2010) who in assessing the accuracy of economic capital based on the top-down 

approach, noted that it was relatively difficult to select a copula function that captures the risk 

aggregated by the bottom-up approach. Liang, et al., (2013) compared factor, elliptical and 

Archimedean copulas in their work on credit risk and market risk integration of Chinese banks 

and found that factor copulas led to a more cautious risk aggregation. Li, et al., (2015) also did 

a comparative copula study when they reviewed extant methods of aggregating market, credit 

and operational risks using the Austrian banking industry and found the t-copula to be an 

adequate method for capturing tail dependence while the Gaussian copula was not 

recommended. Guharay, Chang, and Xu (2018) noted that the VaR risk metric has always been 

difficult to robustly estimate for different data types especially as the classical approaches 

assumes independence of loss severity and frequency (which they contend is not always the 

case in real life situations). Thus, Guharay, Chang, and Xu (2018) employed a mixture copula-

based approach to robustly estimate VaR in heavy tail data. 

 

3 Methodology 

 
3.1  Data 

 

 Quarterly premiums and claims data of the non-life industry comprising 29 insurance 

firms from 2012Q4 to 2020Q4 was collected on all lines of business of each insurer, that is:  
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• Fire: - for each insurance company the premiums collected for Fire cover as well as 

claims paid on Fire policies in each quarter. 

• Motor: - for each insurance company the premiums collected for Motor cover as well 

as claims paid on Motor policies in each quarter. 

• Personal Accident: - for each insurance company the premiums collected for Personal 

Accident cover as well as claims paid on Personal Accident policies in each quarter. 

• Marine and Aviation: - for each insurance company the premiums collected for Marine 

and Aviation cover as well as claims paid on Marine and Aviation policies in each 

quarter. 

• Liability: - for each insurance company the premiums collected for Liability cover as 

well as claims paid on Liability policies in each quarter. 

• Bond: - for each insurance company the premiums collected for Bond cover as well as 

claims paid on Bond policies in each quarter. 

• Others: these are lines of business that are infrequent (sometimes one-off policies), for 

example, cover for a specific engineering project. 

 

Ghana Stock Exchange Composite Index Level: this data is collected as a proxy for the general 

performance of equity in the Ghanaian economy. 

 

91-day Treasury Bill Rate: this data is used as a proxy for the general performance of bonds 

in the Ghanaian economy. 

 

3.2  Data Transformation 

 

For each quarter and each line of business the data is transformed to return series using 

the formula: 

𝑈𝑛𝑑𝑒𝑟𝑤𝑟𝑖𝑡𝑖𝑛𝑔 𝑟𝑒𝑡𝑢𝑟𝑛 =
𝑃𝑟𝑒𝑚𝑖𝑢𝑚 − 𝑃𝑟𝑒𝑠𝑒𝑛𝑡 𝑉𝑎𝑙𝑢𝑒 𝑜𝑓 𝐶𝑙𝑎𝑖𝑚𝑠

𝑃𝑟𝑒𝑚𝑖𝑢𝑚
 

 

and for the asset series, the continuous returns are evaluated for the GSE-CI while the 

government bond is scaled to reflect the quarterly returns as shown below. 

 

 𝑆𝑡𝑜𝑐𝑘 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 =
log 𝐺𝑆𝐸𝐶𝐼 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑙𝑒𝑣𝑒𝑙

log 𝐺𝑆𝐸𝐶𝐼 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑙𝑒𝑣𝑒𝑙
 

 

 𝐵𝑜𝑛𝑑 𝑟𝑒𝑡𝑢𝑟𝑛𝑠 =
91 − 𝑑𝑎𝑦 𝑇 − 𝑏𝑖𝑙𝑙 𝑟𝑎𝑡𝑒

4
 

 

 

3.3  Copula based ARMA-GARCH Model 

 

To account for the stylized facts of financial time series such as conditional 

heteroscedasticity, heavy tails and other conditional dependencies that may impact the 

economic capital estimation, we employ the copula based ARMA-GARCH model to model 

our data. 

 

3.3.1  Marginal Distributions 

 

The assumption of normality that underlies the classical theoretical developments in 

financial time series are often violated in real datasets (Puccetti, 2019). As an example, using 
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our data, we illustrate with a normal quantile-quantile plot from our dataset as shown in Figure 

1 below. The data is from the underwriting returns of the fire line of business and the bond 

investment returns. In a normal quantile-quantile plot, if the data is from the normal 

distribution, the circles will plot close to the straight line, but it is observed that is not the case 

in each of the two plots in Figure 1 indicating that the fire underwriting and bond investment 

returns are not from the normal distribution. If Figure 2 (right), the fire underwriting density 

plot shows skewness and a heavy tail indicating that the use of a symmetric distribution that 

does not capture tail dependencies (like the normal distribution) will underestimate the risk 

exposure inherent in the series (Punzo, Bagnato, & Maruotti, 2018).  

 

 
Figure 1: Normal Q-Q Plots for Fire Underwriting and Bond Returns 

 
Figure 2: Underwriting Returns Volatility and Density Plot for Fire Line of Business 
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To identify the underlying marginal distributions of the data for the study, each variable 

was fitted with several distributions and the best fitting distribution chosen based on 

loglikelihood and information criteria. Table 1 below shows the marginal distributions closest 

to the empirical distributions of the variables as well as associated parameters. The choice of 

distributions fitted were based on actuarial literature. The distributions tested for each variable 

are Beta, Birnbaum-Saunders, Exponential, Extreme Value, Gamma, Generalized Extreme 

Value, Generalized Pareto, Inverse Gaussian, Logistic, Log-Logistic, Lognormal, Nakagami, 

Normal, Rayleigh, Rician, t-Location-Scale and Weibull. To illustrate, we present Figure 3 as 

an example of the process of choosing a close matching distribution for each variable. In the 

figure, the stock returns variable is shown, with the best four fitting distributions superimposed. 

 

 
Figure 3: Distributions fitting for stock returns showing the 4 best fitting distributions. 

  

 

Table 1: Marginal Distributions of Data 

      Distribution parameters 

Distribution NLogL BIC AIC mu sigma k theta 

Fire GPD -52.10 -93.71 -98.20  0.53 -1.45 0.60 

Motor GPD -52.89 -95.29 -99.78  0.13 -0.60 0.61 

Accident EV -36.29 -65.58 -68.57 0.82 0.06   

MnA EV -51.65 -96.31 -99.30 0.99 0.04   

Liability Logistic -34.13 -61.28 -64.27 0.87 0.05   

Bonds GPD -34.21 -57.93 -62.41  0.50 -1.17 0.57 

Others GPD -726.14 -1441.79 -1446.28  0.62 -6.90 0.91 

Stock EV -17.88 -28.76 -31.75 0.08 0.14   

Gbond GPD -99.52 -188.55 -193.03   0.09 -1.37 0.00 

Notes: GPD (Generalized Pareto Distribution); EV (Extreme Value distribution); NLogL 

(Negative Loglikelihood). 

 

3.3.2  ARMA-GARCH Model 

 

To deal with the stylized issue of volatility clustering in financial time series as well as 

skewness and heavy tails, we adopt the skewed Student’s t-distributed ARMA(1,1)-
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GARCH(1,1) model. This is a mean-variance model with the ARMA(1,1) part modelling the 

conditional mean process while the GARCH(1,1) models the conditional time-varying 

volatility process. The order of the model was selected from testing several ARMA-GARCH 

models and selecting the best fitting model using log-likelihood, information criteria as well as 

Ljung-Box tests.  The model is given as 

 

𝑋𝑡 = µ + ɸ(𝑋𝑡−1 − µ) + 𝜃𝜀𝑡−1 + 𝜀𝑡 

 

𝜀𝑡 = 𝜎𝑡𝜂𝑡 

 

𝜎𝑡
2 = 𝜔 + 𝛼𝜀𝑡−1

2 + 𝛽𝜎𝑡−1
2  

 

A pairwise scatter plot of the variables clearly shows that the dependencies may not be 

linear as illustrated in Figure 4 below (see Appendix for other plots). It is observed that there 

is no discernible pattern in the pairwise plots, we therefore adopt the 𝑡-copula, which is implied 

by the multivariate Student’s t-distribution, to investigate the global dependence structure of 

our data.  

 
Figure 4: Dependency Among Variables 

 

The 𝑡-copula with 𝜈 degrees of freedom can be written as  

 

𝐶𝜈,𝜌
𝑡 (µ1, … , µ𝑛) = 𝑡𝜈,𝜌(𝑡𝜈

−1(µ1), … , 𝑡𝜈
−1(µ𝑛)) 

 

where 𝑡𝜈,𝜌 is the multivariate 𝑡-distribution function with correlation matrix 𝜌 and 𝜈 degrees of 

freedom while 𝑡𝜈 is the marginal 𝑡-distribution function. 

 

Huang and Shemyakin (2020) have noted that t-copulas have recently become popular 

as a modeling tool of non-linear dependence in statistics. The preference of the 𝑡-copula is its 

ability to generate joint extreme movements regardless of the marginal behaviour of the 

individual random variables while at the same time incorporating non-normal characteristics 

of stochastic variables. This is a desirable feature in cases where extreme events can occur 
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simultaneously which is what the case should be when aggregating risks in an economic capital 

modelling situation. Zeevi and Mashal (2002) showing that equity market indices exhibited 

extremal behaviour found that the 𝑡-copula appropriately represented the dependence structure 

of extreme co-movements of financial asset returns. Breymann, Dias and Embrechts (2003) 

also showed that the 𝑡-copula empirically provides the best fit for financial returns data while 

Brechmann, Czado and Paterlini (2014) also found the 𝑡-copula to provide a good fit for 

operational risk losses. Huang and Shemyakin (2020) compared skewed t-copula models for 

insurance and financial data and suggested the Metropolis-Hastings algorithm with block 

updates to deal with the problem of intractability of conditionals in skewed t-copulas.  

 

Some copulas like the Clayton copula are best suited for modelling lower tailed 

distributions while others like the Gumbel copula are for upper tailed distributions but the t-

copula can model both upper and lower tailed distributions and looking at Figure 5 below it is 

observed that the distributions we are aggregating are characterized by both upper and lower 

tails hence providing further support of the choice of the multivariate t-copula as the copula of 

choice. 

 

3.3.3  Steps in Economic Capital Estimation Procedure 

 

Step 1: Standardize residuals from ARMA-GARCH Model. 

Step 2: Convert standardized residuals to Uniform (0,1) samples. 

Step 3: Use Student’s t-copula to generate 200,000 realizations of 𝑈𝑖,   𝑖 = 1, … ,9 where the 

𝑈𝑖
′s represent the 2 asset and 7 liability lines. 

Step 4: Obtain 𝐹𝑖
−1(𝑈𝑖) to transform the uniformly distributed values back into the original 

units. 

Step 5: Let 𝑅𝑖 = 𝐹𝑖
−1(𝑈𝑖) and define 𝐴𝑡 = 𝑤1𝑅1,𝑡 + ⋯ + 𝑤9𝑅9,𝑡 where 𝑤𝑖

′𝑠 are the weights of 

the 9 data lines. 

Step 6: Estimate 𝑉𝑎𝑅𝜶(𝑡) and  𝐶𝑉𝑎𝑅𝜶(𝑡) at time 𝑡 at a significance level 𝜶. 𝑉𝑎𝑅𝜶 is the 𝜶-

quantile of the weighted distribution 𝐴𝑡. 
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Figure 5: Skewness and Tails of Marginal Distributions 
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4 Data Analysis 

 
Figure 6 and Table 2 below gives some perspectives on the insurance industry in Ghana 

over the period of the study. It is observed from Figure 4 that the Motor line of business is 

predominant making up 47% of overall industry premiums written over the period of study 

with the Fire line of business taking second place at 23% of the industry. This shows that Motor 

and Fire constitutes 70% of the entire insurance business in Ghana as measured by gross 

premiums written. 

 

Thus, these two lines of business may pose the largest source of underwriting risk 

exposure for the insurer but over the period of study, underwriting returns for all lines of 

insurance business have been above 70% (see Table 2 below). 

 

 
Figure 6: Line of business share of market by premiums written 

 

The line of business grouped under others contains insurance for engineering and other 

one-off insurance arrangements and the data shows that there are instances for this group where 

premiums were paid, and no claims were made for the quarter therefore translating into a 100% 

return on underwriting hence this group is observed to have the highest mean underwriting 

return (Table 2) even though it forms only 8% of the market. Motor line of business had the 

lowest mean underwriting returns (of 70%) even though it constitutes the largest chunk of the 

market, and being almost half of the market, this indicates that the exposure from Motor in any 

quarter can significantly impact the entire industry.  

 

 

 

 

Fire

23%

Motor

47%

Personal 
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Table 2: Summary Statistics 

 Mean Standard Deviation Minimum Maximum 

Fire 0.8822 0.0917 0.6010 0.9668 

Motor 0.7006 0.0532 0.6149 0.8308 

Personal Accident 0.7819 0.1011 0.4914 0.9075 

Marine and 

Aviation 0.9642 0.0647 0.7499 1.0556 

Liability 0.8697 0.0950 0.6366 1.2103 

Bonds 0.8413 0.1091 0.5705 0.9945 

Others 0.9892 0.0204 0.9108 1.0000 

Stock 0.0188 0.1147 -0.1604 0.3713 

Gov Bond 0.0474 0.0123 0.0308 0.0646 

 

 The asset side of the data shows mean quarterly equity returns (1.88%) being lower 

than bond returns (4.74%), but it is observed that the equity returns ranges from -16.04% to as 

high as 37.13% while the bond returns ranged from 3.08% to 6.46% showing equity to be more 

volatile than bonds as expected from literature. 

 

4.1  ARMA-GARCH Modelling  

 

Similar to Shim and Lee (2017), different GARCH(p, q) models (𝑝 = 1,2 𝑎𝑛𝑑 𝑞 ∈ 1,2) 

were fitted to the data to model conditional heteroscedasticity of the returns and it was found 

that in most cases the GARCH(1,1) model fitted better and hence for model parsimony and in 

tandem with financial timeseries literature (Bera & Higgins, 1993), the GARCH(1,1) was 

chosen to model the variance process. Table 3 below shows the loglikelihood, Akaike 

Information Criteria (AIC) and Bayesian Information Criteria (BIC) values for the models 

tested prior to choosing the parsimonious GARCH (1,1) for the variance process. A model is 

preferred over another if it minimizes information criteria. It is therefore observed from Table 

3 that the AIC chose GARCH (1,2) for the underwriting returns of Fire, but BIC chose GARCH 

(1,1). In case such as this, the choice of BIC is preferred since AIC is known to overestimate 

model size in some cases.  For the variables Motor, Liability, Bonds, Others, Stock and Gbond 

both AIC and BIC chose GARCH (1,1) while for Accident both AIC and BIC chose GARCH 

(1,2) and for Marine and Aviation both AIC and BIC chose GARCH (2,1).  

 

Table 3: GARCH Model Selection Criteria 

Variable   

GARCH 

(1,1) 

GARCH 

(1,2) GARCH (2,1) 

GARCH 

(2,2) 

Fire Model 

Selection 

Criteria 

LL 50.12985 51.41812 50.13081 51.41812 

 AIC -2.6139 -2.6314 -2.5534 -2.5708 

 BIC -2.2965 -2.2686 -2.1906 -2.1627 

 Ljung-

Box Test 

P-value1 0.8431 0.942 0.8404 0.942 

 P-value5 1 1 1 1 

       
Motor LL 54.48723 54.48636 54.48636 54.48636 

 AIC -2.878 -2.8174 -2.8174 -2.7567 
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Variable   

GARCH 

(1,1) 

GARCH 

(1,2) GARCH (2,1) 

GARCH 

(2,2) 

 

Model 

Selection 

Criteria BIC -2.5606 -2.4546 -2.4546 -2.3486 

 Ljung-

Box Test 

P-value1 0.800264 0.801271 0.801355 0.801285 

 P-value5 0.00709 0.007229 0.007236 0.007229 

       
Accident Model 

Selection 

Criteria 

LL 41.3803 44.4413 41.43266 44.44081 

 AIC -2.0837 -2.2086 -2.0262 -2.1479 

 BIC -1.7662 -1.8458 -1.6634 -1.7398 

 Ljung-

Box Test 

P-value1 0.3346 0.7339 0.3415 0.7342 

 P-value5 0.9893 0.9756 0.9898 0.9757 

       
MnA Model 

Selection 

Criteria 

LL 88.30441 90.33503 94.08321 86.4274 

 AIC -4.9275 -4.99 -5.2172 -4.6926 

 BIC -4.6101 -4.627 -4.8544 -4.2844 

 Ljung-

Box Test 

P-value1 0.8467 0.846 0.8467 0.847 

 P-value5 1 1 1 1 

       
Liability Model 

Selection 

Criteria 

LL 39.28427 40.57284 39.47852 40.57284 

 AIC -1.9766 -1.9541 -1.9078 -1.9135 

 BIC -1.6392 -1.6113 -1.545 -1.5054 

 Ljung-

Box Test 

P-value1 0.2795 0.1421 0.2686 0.1422 

 P-value5 0.9916 0.4942 0.9889 0.4943 

       
Bonds Model 

Selection 

Criteria 

LL 28.67468 28.7015 28.70193 28.70166 

 AIC -1.31362 -1.25464 -1.25466 -1.194 

 BIC -0.99618 -0.89185 -0.89187 -0.7859 

 Ljung-

Box Test 

P-value1 0.9776 0.9795 0.9807 0.9809 

 P-value5 0.9996 0.9996 0.9996 0.9996 

       
Others Model 

Selection 

Criteria 

LL 271.3373  268.2912  

 AIC -16.02  -15.775  

 BIC -15.703  -15.412  

 Ljung-

Box Test 

P-value1 0.00803  0.01695  

 P-value5 0  0  

       
Stock Model 

Selection 

Criteria 

LL 28.47423 28.47559 28.47559 28.47559 

 AIC -1.30147 -1.24094 -1.24094 -1.1803 

 BIC -0.98403 -0.87816 -0.87816 -0.7722 

 Ljung-

Box Test 

P-value1 0.8019 0.8065 0.8065 0.8065 

 P-value5 0.94 0.9435 0.9435 0.9435 

       
Gbond LL 85.86294 85.84529 85.84494 85.84529 

 AIC -4.7796 -4.7179 -4.7179 -4.6573 
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Variable   

GARCH 

(1,1) 

GARCH 

(1,2) GARCH (2,1) 

GARCH 

(2,2) 

 

Model 

Selection 

Criteria BIC -4.4621 -4.3551 -4.3551 -4.2492 

 Ljung-

Box Test 

P-value1 0.006828 0.006742 0.006708 0.006742 

 P-value5 0 0.07871 0 0.07871 

 

The estimated parameter values of the ARMA(1,1)-GARCH(1,1) are as shown in Table 

4 below. The fit of the model for each of the variables is generally good as evidenced by p-

values greater than 5% indicating that we fail to reject the null hypothesis that the distributional 

assumptions of the innovations are correctly specified at the 5% level of significance testing. 

This indicates that the student’s t-skewed distribution assumption on the innovations is 

adequate to model the series. 

 

Table 4: Estimated Parameters of ARMA(1,1)-GARCH(1,1) Model 

Variables µ ɸ  θ ω α β Shape p value 

Fire 0.9253 0.5435 0.0836 0.0004 0.1195 0.7428 2.6336 0.9302 

Motor 0.6911 0.1633 0.405 0.0002 0 0.9112 5.1622 0.1362 

Accident 0.8256 0.7501 -0.2152 0 0 0.9794 4.7847 0.6512 

MnA 1 0.9994 -0.1056 0 0.9278 0.0682 2.3471 0.0001 

Liability 0.872 -0.334 0.6304 0.0009 0 0.8173 3.493 0.4918 

Bonds 0.8446 0.174 0.1629 0.0001 0 0.999 95.761 0.1159 

Others 1 0.9656 -0.0518 0 0.107 0.1856 2.3046 0 

Stock 0.0169 0.699 -0.4815 0.0001 0 0.9977 3.1962 0.9764 

Gbond 0.2308 0.9881 -0.0207 0 0 0.9556 2.1 0.0061 

 

 

4.2 Economic Capital Estimation Results 

 

Table 5: VAR Forecasts for Next 8 Quarters 

  2021Q1 2021Q2 2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 

𝑽𝒂𝑹𝟓% -0.6380 -0.6372 -0.6399 -0.6370 -0.6388 -0.6367 -0.6370 -0.6381 

𝑽𝒂𝑹𝟐.𝟓% -0.7625 -0.7617 -0.7644 -0.7616 -0.7634 -0.7613 -0.7616 -0.7626 

𝑽𝒂𝑹𝟏% -0.9091 -0.9083 -0.9111 -0.9082 -0.9099 -0.9079 -0.9082 -0.9092 

 

The interpretation of the 𝑽𝒂𝑹𝟓% in 2021Q1 being -0.6380 (see Table 5 above) is that 

in the first quarter of 2021 there is a 5% chance that industry loses will exceed 63.8% of the 

entire portfolio of the insurance industry. This is an extreme event indicator, thus, to ensure 

survival of extreme risk events the insurance industry over this period need 63.8% of its 

portfolio as risk capital to be 95% confident that should such an event occur, the industry will 

survive and continue with business as usual. The 𝑽𝒂𝑹𝟓% for the rest of the periods are around 
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this figure hence it can be inferred that for each of the quarters from 2021Q1 to 2022Q4, the 

insurance industry needs about 64% of its entire portfolio as economic capital to stave off any 

catastrophic risk event with 95% confidence. 

 

From Table 5, the forecasts show that to be 99% confident in regard to being solvent in 

case of any catastrophic risk exposure materialization then the industry will need about 91% 

of its entire portfolio as economic capital. This is derived from the 𝑽𝒂𝑹𝟏% forecasts over the 

forecast horizon.  

 

For a 97.5% confidence that in the event of extreme risk event, the insurance industry 

will be solvent to carry on business as usual, the 𝑽𝒂𝑹𝟐.𝟓% forecasts over the forecast horizon 

indicates that for each of the forecasted quarters, the industry will require about 76% of its 

entire portfolio. 

 

The VaR risk measure only tells how much is needed at a particular confidence level to 

mitigate an extreme loss event but the CVaR gives the expected amount that will be lost should 

such extreme events occur, therefore CVaR measure is computed and shown in the table below.  

 

It is inferred from Table 6 below that there is a 5% chance that over the 2021Q1 the 

insurance industry will lose 79.98% of its portfolio should extreme loss event occur. This loss 

amount is roughly the same over the remaining forecast periods hence for each of the forecasted 

quarters the industry may lose about 80% of its portfolio. This figure goes up to about 90% 

with a probability of 2.5% as evidenced by the 𝐶𝑉𝑎𝑅2.5% values. There is however a 1% chance 

that extreme loss events can completely wipe out the portfolio of the insurance industry. This 

is shown by the  𝐶𝑉𝑎𝑅1% values. 

 

Table 6: CVAR Forecasts for Next 8 Quarters 

  2021Q1 2021Q2 2021Q3 2021Q4 2022Q1 2022Q2 2022Q3 2022Q4 

𝑪𝑽𝒂𝑹𝟓% -0.7998 -0.7987 -0.8021 -0.7985 -0.8008 -0.7981 -0.7985 -0.7999 

𝑪𝑽𝒂𝑹𝟐.𝟓% -0.9088 -0.9078 -0.9111 -0.9077 -0.9098 -0.9073 -0.9077 -0.9089 

𝑪𝑽𝒂𝑹𝟏% -1.0434 -1.0425 -1.0457 -1.0424 -1.0443 -1.0420 -1.0424 -1.0436 

 

 

5 Summary, Conclusion and Recommendations 

 
This paper has evaluated the economic capital of the non-life insurance industry in 

Ghana and found that over the quarters in 2021 and 2022, there is a 5% chance that in each 

quarter the industry will lose more than 64% of its portfolio and that should extreme events 

trigger such losses then it should be expected that losses will amount to about 80% of the 

industry portfolio. The average quarterly premium of the entire industry is GH¢701m, thus if 

the 29 non-life firms surveyed each hold the required minimum capital of GH¢50m, the 

industry will have enough (GH¢1,450m) to manage such an exposure. But it was observed that 

the total industry premium for the last quarter in 2020 was highest, recording GH¢1,857 and 

so the total industry regulatory capital will just be enough at the 5% to cover its exposure. This 

means that as the non-life industry underwrites more risks (as evidenced by increasing premium 
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collections) the regulator must consistently update and increase the required capital to ensure 

firm sustainability in the industry. 

 

The research of Denkowska and Wanat (2020) confirms the systemic risk generated by 

insurance firms and the higher positive correlation among them during global financial 

turbulence hence the regulator must keep track of the growth in the industry to ensure the 

required minimum capital is in place to avert disaster. 

 

Since extremal activities have the potential of damaging the industry, this paper has 

found that there is a 1% chance in each of the quarters from 2021 to 2022, that the non-life 

insurance industry will be wiped out. Such an event, though as remote as 1 out of 100, can have 

dire consequences for the economy and financial sector. 

 

Further research can investigate dynamic models that incorporate industry growth to 

set minimum capital requirements over specified time horizons taking projected industry risk 

profile into consideration. 
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