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Abstract

This article examines the impact of some traditional reinsurance treaties on the loss
reserve of the ceding company. More precisely, it considers quota share treaty, surplus
treaty, excess-of-loss treaty, and two combinations of them. Then, it develops a theoretical
foundation for predicting the cedent’s loss reserve and evaluating such prediction using
the mean square error of prediction. The application of our findings has been given for
a car collision insurance loss portfolio. Moreover, the impact of such reinsurance treaties
on the variability of the cedent’s loss reserve has been investigated through a simulation
study.
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1 Introduction

Loss reserve is the amount of money set aside by insurers to reimburse policyhold-
ers’ developed claims. Some of these claims may be settled long after the policy expired.
These claims are called long-term liabilities. A long-tail liability is an insurance claim
that is not settled until well beyond when a policy has expired. These claims are usually
associated with claims that are incurred but not reported during a policy period. This
delay may be caused by a long court case that must be settled first or a lengthy investi-
gation by the insurer. Long-tail liability tends to be associated with medical malpractice
claims, employment discrimination, and occupational disease claims. Therefore, insur-
ance companies have to predict and hold loss reserves for such losses. In contrast, to a
long-tail business, a short-tail business is an insurance business where it is known that
claims will be made and settled quickly.

We may have two types of loss reserves: incurred but not reported, say IBNR,
and reported but not settled, say RBNS. The total loss reserves have been predicted by
adding the IBNR’s and RBNS’s predictions. Prediction of loss reserves is an important
and challenging problem for both insurers and reinsurers. The method of predicting the
loss reserve depends on the insurance company’s loss pattern, and it cannot be said that
a specific reserve method provides the best estimate of the reserve for all insurance com-
panies. An appropriate prediction of the loss reserves may help insurance/reinsurance
companies in different directions, e.g., improving pricing methods, choosing a reinsurance
policy, etc.

Since under a given reinsurance treaty, the reinsurer is also responsible, concerning
some part of total loss reserves, most regulatory frameworks (including Solvency II) and
accounting standards (such as the International Financial Reporting Standard 17, known
as IFRS 17) require insurers and reinsurers to predict their outstanding claim for each line
of business. This requirement can be understood in the sense of an existing reinsurance
contract, the outstanding claim for both the cedent and reinsurer has to be predicted,
separately. For more details, see England et al. (2019), Winkler and Kansal (2020), and
Margraf et al. (2018), among others.

Regardless of the existence of the reinsurance treaty, there is very rich literature on
the prediction of the total loss reserves. For instance, Mack (1993), Arjas (1989), and
Norberg (1993, 1999), among others, based on total run-off triangles, developed some
prediction methods for the total loss reserves. Antonio and Plat (2014) used detailed
information on the claim’s occurrence time, the delay between occurrence and reporting,
the payments’ occurrences and their sizes, and the final settlement to calibrate a model
to historical data and predict future developed claims. Verrall et al. (2010) predicted the
RBNS and the IBNR claims using claim amounts and claim counts. Martinez-Miranda
et al. (2012) extended Verrall et al. (2010)’s model by introducing a double chain ladder,
say DCL, model. Martinez-Miranda et al. (2015) developed the DCL model for situations
where some prior knowledge of the number of zero-claims and the relationship between
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the developed claims is available. Other authors such as Salzmann and Wüthrich (2012),
Merz et al. (2014), Crevecoeur et al. (2019), Duval and Pigeon (2019), Maciak et al.
(2018), Noviyanti et al. (2019), Baudry and Robert (2017), Wüthrich (2018), among
others, considered a variety of methods, including multivariate models, copula models,
machine learning approaches, and neural network approaches.

The impact of a reinsurance treaty on many actuarial aspects of an insurance com-
pany has been studied by many authors. For instance, Kasozi et al. (2013) indicated that
quota share reinsurance does have a positive impact on the survival of insurance compa-
nies as it minimizes their ultimate ruin probabilities. Riegle (2015) used the chain ladder
method to predict price uncertainty under a long-tail quota share reinsurance treaty. The
impact of reinsurance treaties on the insurer’s lifetime has been investigated by Fan et
al. (2017).

As far as we know, a small amount of literature has studied the impact of rein-
surance contracts on outstanding claims. Taylor’s study (1982) was the first work that
predicted the outstanding claims of an insurance portfolio, under an excess-of-loss rein-
surance treaty. Hertig (1985) derived a prediction for ultimate claims and current IBNR
reserves under some long-term reinsurance treaties and some mild assumptions on loss
ratio distribution. Craighead (1994) is considered a reinsurer that has accepted several
reinsurance treaties which have given rise to catastrophe losses. Under the assump-
tion that such catastrophe losses follow a normal development pattern, he predicted the
reinsurer’s gross losses using two approaches (exposure totals and statistical modeling
approaches). Murphy and McLennan (2006) estimated the uncertainty of individual
large claims in an insurance portfolio. They implemented a stochastic chain ladder (CL)
method to project the individual large claims whenever the simulated CL factors are sam-
pled from the observed CL factors in historical large claims. Veprauskaite and Adams
(2017) studied the relationship between loss reserving errors, leverage, and reinsurance
in the UK’s property-casualty insurance industry. They observed that financially weak
insurance companies usually underestimate reserves to reduce leverage, and so preempt
costly regulatory scrutiny. Margraf et al. (2018) introduced the recovery payment method
to predict the cedent’s loss reserve under an excess-of-loss reinsurance treaty. More pre-
cisely, they constructed the reinsurance recovery run-off triangle as well as the total
run-off triangle, then they used the DCL method to predict loss reserve for the cedent
company. Úbeda Inés (2020) considered the RBNS claims data under some reinsurance
treaties. Then, using two well-known actuarial loss reserving methods (chain ladder and
generalized linear mixed models), he predicted future claims payments and the corre-
sponding mean square error, for each party.

Following the above discussion, this article focuses on the problem of predicting the
cedent’s loss reserves under the quota share (say QS) treaty, surplus (say SPL) treaty,
excess-of-loss (say XL) treaty, and two combinations of them (say QSSPL and QSXL
treaties). Then, it develops a theoretical foundation for predicting the cedent’s loss re-
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serves and evaluating such prediction using the mean square error of prediction, say
MSEP. Note that MSEP is used to check the predicted accuracy of the loss reserve.
Moreover, this article examines the impact of these types of reinsurance treaties on the
MSEP of loss reserves. This observation releases some commercial and regulatory aspects
of reinsurance treaties, see Eden and Kahane (1988) for more details.

The rest of this article is organized as follows. Section 2 provides some preliminary
knowledge about the loss reserving method and some reinsurance treaties. Theoretical
foundations and main contributions are presented in Section 3. Section 4 illustrates a
practical application of our findings on a real dataset and a simulation study. Conclusion
and suggestions have been given in Section 5.

2 Preliminaries

Suppose that the data are available in a triangular form (see Figure 1 on Page 5, for
a graphical representation). Let Nij, for i = 1, 2, · · · , I; j = 0, 1, · · · , I − 1, be the total
number of claims that occurred in accident time i and reported to the insurance company
at time i + j. Moreover, assume that Xij is the claim amount that occurred in accident
time i and fully paid before or at time i+ j. Note that j is called the development year.
Development year is the amount of time taken for the claim to develop from its accident
year.

At the time t = i+ j, the Figure 1’s cells can be decomposed into two parts: (1) the
upper triangle containing all observations and (2) the lower triangle which is unknown
and has to be predicted, using an appropriate (in some sense) method.

To convince in presentation, let NI and DI represent the filtration based upon the
past information at observation time I for the number of claims and its corresponding
amounts, respectively. In other words,

NI = {Nij : i = 1, · · · , I, j = 0, · · · , I − 1; i+ j ≤ I} (1)

DI = {Xij : (i, j) ∈ NI}. (2)

Assume that Npaid
i,j,l , denotes the number of future payments originating from Nij claims

that occurred at accident time i and were fully paid with l period delay (after being

reported to the insurance company). The aggregate paid claim, denoted by Npaid
ij , has

the following form

Npaid
ij =

min{j,d}∑
l=0

Npaid
i,j−l,l, (3)

where d is the maximum delay period to pay the claim (after being reported). The total
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(a) (b)

Figure 1: IBNR tables and their corresponding run-off triangles for the number of reported claims,
Nij , (Panel, a) and increment payments, Xij , (Panel, b).

claim amount, for each given (i, j), is denoted by Xij and defined by

Xij =

min{j,d}∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l, (4)

where Y
(k)
i,j−l,l stands for the size of the kth individual claims that occurred at accident

time i, reported at time i+ j − l, and fully paid before or at time i+ j.

In practice, some of the reported claims are settled with no payments (for example,

because of fraud, franchise, etc.). So, the individual payments Y
(k)
i,j−l,l can be modeled by a

mixed-type distribution based on a light-tailed severity distribution (such as the Gamma
distribution, for instance), with a probability mass at zero, wi. To consider this fact, one
has to consider a zero-inflated distribution for a claim severity.

Note that prior knowledge about zero-claims is considered in several studies. For
example, Verrall et al. (2010) considered Gamma distribution for the density of non-zero
claims. Martinez-Miranda et al. (2015) assumed non-zero claims have a distribution with
a conditional mean and variance. Denuit and Trufin (2017) proposed a zero-augmented
regression model for open claims. They used a mixture model with a Gamma and Pareto
type 2 component augmented with a probability mass at zero.

This article employs the following zero-inflated Gamma distribution for the size of
claims.
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Definition 1. A random variable Y
(k)
i,j−l,l has been distributed according to the zero-inflated

Gamma distribution if its density function is

p
Y

(k)
i,j−l,l

(y) = wiI{y=0}(y) + (1− wi)Gamma(θ, λ)I{y>0}(y), (5)

where 0 ≤ wi ≤ 1 is the zero-inflation probability, and Gamma(θ, λ) stand for the Gamma
density function with shape and scale parameters θ and λ, respectively. I{B} denotes the
indicator function of event B.

The incomplete Gamma function Γ(a, b) and the Gamma function, which plays a
crucial role in the rest of this article, respectively, are defined by

Γ(a, b) =

∫ b

0

e−yya−1dy & Γ(a) =

∫ ∞

0

e−yya−1dy, (6)

where a and b are positive values.

As mentioned before, for the upper triangle i+j ≤ I, total payments Xij are known.
But for the lower triangle i+ j > I, the total payments Xij are unknown and should be
predicted. There are two types of claims: one has not been reported yet, say XIBNR

ij ,

and the other one has been reported but not fully paid, say XRBNS
ij . By taking this fact

into account, total unknown payments Xij, where i+ j > I, may be decomposed at time
i+ j as

Xij =

i+j−I−1∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l +

min{j,d}∑
l=i+j−I

Npaid
i,j−l,l∑
k=1

Y
(k)
i,j−l,l

= XIBNR
ij +XRBNS

ij . (7)

In general insurance, insurance companies seek appropriate (in some sense) reinsur-
ance protection to reduce and homogenize their risk portfolio. A reinsurance treaty is a
form of an insurance contract where a reinsurer accepts to pay a portion of an insurer’s risk
by receiving a reinsurance premium (Payandeh Najafabadi and Panahi Bazaz, 2018). In
the reinsurance literature, the insurer is known as the first-line insurer or ceding company.

Let Y (k), k = 1, · · · , Npaid
i,j−l,l, be a sequence of random claim sizes, which are indepen-

dent and identically distributed, and independent of the number of claims Npaid
i,j−l,l. Under

most reinsurance treaties, each individual claims Y are decomposed into a retention part,
say Y In, and a reinsured part, say Y Re, where Y = Y In + Y Re and 0 < Y In,& Y Re < Y.

As mentioned before, this article focuses on three well-known forms of classical rein-
surance treaties and their combinations. All classical reinsurance treaties can be classified
into proportional and non-proportional treaties. Under a proportional reinsurance treaty,
premiums and losses share proportionally between the cedent and the reinsurance compa-
nies. Meanwhile, under a non-proportional reinsurance treaty, the reinsurer participates
in those loss events that meet the reinsurance conditions.

The following provides the general concept of the QS, SPL, XL, QSXL, and QSSPL
reinsurance treaties.
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QS treaty: Under a quota share reinsurance treaty, the reinsurance company accepts a
fixed percentage C% (where proportionality factor satisfies 0 < C < 1) of each
claim. In the other word, claim Y (k) shares as Y (k)In−QS = (1 − C)Y (k) and
Y (k)Re−QS = CY (k), between the cedent and the reinsurance companies, respec-
tively.

SPL treaty: A surplus reinsurance treaty, say SPL, is a proportional reinsurance treaty
which its proportionality factor depends on the sum insured (policy limit) of claim
Y (k). Let Qk stands for the sum insured of the claim Y (k). For the fixed retention
line A, the cedent and the reinsurer portions, respectively, for a claim Y (k) are

Y (k)In−SPL = Y (k)I{Qk≤A} +A
Y (k)

Qk
I{Qk>A} and Y (k)Re−SPL = (1− A

Qk
)Y (k)I{Qk>A}.(8)

XL treaty: The excess-of-loss reinsurance treaty, say XL, is a non-proportional reinsur-
ance treaty in which the reinsurer agrees to pay all claims that exceed an agreed
amount R, called retention level. Therefore, for claim Y (k) the reinsurance com-
pany pays Y (k)Re−XL = (Y (k) − R)+ and the cedent company pays Y (k)In−XL =
min{Y (k), R}, where (Y (k) −R)+ = max{Y (k) −R, 0}.

QSXL treaty: If a reinsurer applies an excess-of-loss after a quota share, we denote
such a combination by QSXL. Under the QSXL treaty, the contribution of the
cedent, and the reinsurance companies are Y (k)In−QSXL = (1 − C)min{Y (k), R}
and Y (k)Re−QSXL = Y (k) − Y (k)In−QSXL, respectively.

QSSPL treaty: A combination of a surplus and a quota share treaties can be named
by QSSPL. Under this reinsurance treaty contribution of the cedent and the rein-
surance companies, respectively, are

Y (k)In−QSSPL = (1− C)Y (k)I{Qk≤A} + (1− C)A
Y (k)

Qk
I{Qk>A}, (9)

Y (k)Re−QSSPL = Y (k) − Y (k)In−QSXL. (10)

3 Main results

This section employs a model introduced by Verrall et al. (2010) and Martinez-
Miranda et al. (2012, 2015) to predict the net loss reserve under the QS, SPL, and XL
treaties, and two combinations of them. Before going into the details, we introduce the
following assumptions that will be in use hereafter now.

Model Assumption 1. Assume:

A1 : The total number of claims for the accident time i and reported time j, Nij, follows a

Poisson distribution with mean αiβj, where
∑I−1

j=0 βj = 1 and Nij-s are independent
random variables;
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A2 : Conditionally on Nij, the number of paid claims is distributed according to a multi-
nomial distribution. In other words, for each given (i, j), the random vector
(Npaid

i,j,0 , · · · , N
paid
i,j,d ) ∼ multinomial(Nij; p0, · · · , pd), where delay probabilities p0, ..., pd

satisfy 0 ≤ pl ≤ 1 and
∑d

l=0 pl = 1;

A3 : Random individual payment Y
(k)
i,j−l,l has been distributed according to the zero-inflated

Gamma, given by Definition (1). The cumulative distribution function, the first
moment, and the variance of the zero-inflated Gamma distribution can be given by

F
Y

(k)
i,j−l,l

(y
(k)
i,j−l,l) = 1− wi + wi

Γ(θ, λy
(k)
i,j−l,l)

Γ(θ)
, (11)

E[Y
(k)
i,j−l,l] = (1− wi)µγi, (12)

V ar[Y
(k)
i,j−l,l] = (1− wi)σ

2γ2
i + wi(1− wi)µ

2γ2
i ; (13)

A4 : Y
(k)
i,j−l,l, are independent of Nij.

Assumption A3 acknowledges the fact that the reported claims can be closed without
a payment being made, and

E(Y
(k)
i,j−l,l|Y

(k)
i,j−l,l > 0) = µγi (14)

V ar(Y
(k)
i,j−l,l|Y

(k)
i,j−l,l > 0) = σ2γ2

i , (15)

where µ and σ2 are mean and variance of an individual (non-zero) claim severity, respec-
tively. γi is the inflation in the accident year i.

It is well-known that the conditional expectation of E(Xij|NI) plays an essential
role in predicting future loss liabilities, see Wüthrich and Merz (2008) and Taylor (2012),
among others for more details.

In this article, we focus on the cedent’s loss reserve. So, we define the reserve at
time I as E(XIn

ij |NI). This term is often called “best estimate reserve” at time I. To
estimate the quality of the estimated reserves, we calculate the conditional mean square
error of prediction, say MSEP.

The following provides the best estimation of the cedent’s loss reserve, under a gen-
eral reinsurance treaty, and its corresponding conditional MSEP for the cedent’s share
for random claim Xij.

Theorem 1. Suppose filtration NI provides all available information about the number
of paid claims in a loss triangle. Moreover, besides assumptions A1, to A4, given in

Model Assumption (1), assume E(Npaid
i,j−l,l) < ∞, E(Y

(k)
i,j−l,l) < ∞, V ar(Npaid

i,j−l,l) < ∞ and

V ar(Y
(k)
i,j−l,l) < ∞. If XIn

ij stands for the cedent’s contribution on the loss payment Xij,

under a given reinsurance treaty, then the best estimation for XIn
ij , and its corresponding
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conditional MSEP, respectively, are

E(XIn
ij |NI) = (1− wi)γiµ

In

min{j,d}∑
l=0

Ni,j−lpl, (16)

MSEPNI
(XIn

ij , X̂In
ij ) ≈ (1− wi)γ

2
i (µ

2In + σ2In)

min{j,d}∑
l=0

Ni,j−lpl. (17)

Proof. By conditioning on Npaid
i,j−l,l, one may conclude that

E(XIn
ij |NI) = E(E(XIn

ij |N
paid
i,j−l,l)|NI)

= E(E(

min{j,d}∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)In
i,j−l,l|N

paid
i,j−l,l)|NI)

=

min{j,d}∑
l=0

E(Npaid
i,j−l,l|NI)E(Y

(k)In
i,j−l,l)

= (1− wi)γiµ
In

min{j,d}∑
l=0

Ni,j−lpl, (18)

where the last equation arrives from the facts that E(Npaid
i,j−l,l|NI) = Ni,j−lpl and Y

(k)In
i,j−l,l

stands for the cedent’s contribution to the individual payment Y
(k)
i,j−l,l where E(Y

(k)In
i,j−l,l) =

(1− wi)γiµ
In and V ar(Y

(k)In
i,j−l,l) = (1− wi)γ

2
i (σ

2In + µ2In), respectively.

The conditional MSEP can be written as

MSEPNI
(XIn

ij , X̂In
ij ) = V ar(XIn

ij |NI) + E[(X̂In
ij − E(XIn

ij |NI))
2|NI ], (19)

where the first term is well-known as the process variance and the second term is the
estimation error.

Using the fact that X̂In
ij and E(XIn

ij |NI) are NI-measurable, we may conclude

that E[(X̂In
ij − E(XIn

ij |NI))
2|NI ] = (X̂In

ij − E(XIn
ij |NI))

2. This fact along with X̂In
ij =

E(XIn
ij |NI), may help us to restate the above conditional MSEP as

MSEPNI
(XIn

ij , X̂In
ij ) = E(V ar(XIn

ij |N
paid
i,j−l,l)|NI)︸ ︷︷ ︸

(I)

+V ar(E(XIn
ij |N

paid
i,j−l,l)|NI)︸ ︷︷ ︸

(II)

. (20)

Now observe that Part (I) can be simplified as

E(V ar(XIn
ij |N

paid
i,j−l,l)|NI) = E(V ar(

min{j,d}∑
l=0

Npaid
i,j−l,l∑
k=1

Y
(k)In
i,j−l,l|N

paid
i,j−l,l)|NI)

=

min{j,d}∑
l=0

E(Npaid
i,j−l,l|NI)V ar(Y

(k)In
i,j−l,l)

=

min{j,d}∑
l=0

Ni,j−lplV ar(Y
(k)In
i,j−l,l). (21)
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Similarly, Part (II) can be restated as

V ar(E(XIn
ij |N

paid
i,j−l,l)|NI) = V ar(E(

min{j,d}∑
l=0

Npaid
i,j−l,l∑
k=0

Y
(k)In
i,j−l,l|N

paid
i,j−l,l)|NI)

=

min{j,d}∑
l=0

Ni,j−lpl(1− pl)(E(Y
(k)In
i,j−l,l))

2. (22)

Substituting the above findings in Equation (20) leads to

V ar(XIn
ij |NI) =

min{j,d}∑
l=0

Ni,j−lplV ar(Y
(k)In
i,j−l,l) +

min{j,d}∑
l=0

Ni,j−lpl(1− pl)
[
E(Y

(k)In
i,j−l,l)

]2
=

min{j,d}∑
l=0

Ni,j−lpl(1− wi)γ
2
i (σ

2In + µ2In) +

min{j,d}∑
l=0

Ni,j−lpl(1− pl)
[
(1− wi)µ

Inγi
]2

≈ (1− wi)γ
2
i (µ

2In + σ2In)

min{j,d}∑
l=0

Ni,j−lpl

= γi
µ2In + σ2In

µIn
E(XIn

ij |NI) (23)

where the approximation arrives by setting (1− pl)(1− wi)µ
2In ≈ 0. Thus, the variance

will be a proportional of the mean. This means that an over-dispersed Poisson can be
used to approximate the parameters, as in Martinez-Miranda et al. (2012).

Note that, for i+ j > I, the RBNS and the IBNR components, respectively, can be
estimated by

X̂RBNS
ij =

min{j,d}∑
l=i+j−I

Ni,j−lp̂lγ̂iµ̂
In (24)

X̂IBNR
ij =

i+j−I−1∑
l=0

N̂i,j−lp̂lγ̂iµ̂
In, (25)

Now we apply the results of Theorem (1) against the above five mentioned reinsurance
treaties.

The following simplifies Theorem (1)’s result under the quota share reinsurance
treaty.

Proposition 1. Suppose all Theorem (1)’s assumptions hold and the given reinsurance
treaty is a quota share with the proportionality factor C. Then, the results of Theorem
(1) can be simplified as

E(XIn−QS
ij |NI) = (1− C)(1− wi)γiµ

min{j,d}∑
l=0

Ni,j−lpl (26)

MSEPNI
(XIn−QS

ij , X̂In−QS
ij ) ≈ (1− C)2(1− wi)γ

2
i (σ

2 + µ2)

min{j,d}∑
l=0

Ni,j−lpl (27)
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Proof. Substituting XIn
ij = (1 − C)Xij into Theorem (1)’s results lead to the desired

results.

The following simplifies the Theorem (1)’s findings under the surplus reinsurance
treaty.

Proposition 2. Suppose the given reinsurance treaty in Theorem (1) is a surplus reinsur-
ance treaty, say SPL, with retention line A. Moreover, suppose: (1) that positive random
variable Q, with density function fQ(·) and cumulative distribution function FQ(·), stands
for the sum insured corresponding to individual random claim Y, (2) both of individual
random claims Y1, Y2, · · · and their corresponding random sum insured Q1, Q2, · · · are
i.i.d., and (3) the first two conditional moment of random ratio V := Y/Q, say loss de-
gree, satisfy E(V |Q = q) = ϑ <∞ and E(V 2|Q = q) = τ 2 + ϑ2 <∞, respectively.

Then, the results of Theorem (1) can be simplified as

E(XIn−SPL
ij |NI) = (1− wi)γiϑ

[∫ A

0

qfQ(q)dq +A(1− FQ(A))

]

×
min{j,d}∑

l=0

Ni,j−lpl (28)

MSEPNI
(XIn−SPL

ij , X̂In−SPL
ij ) ≈ (1− wi)γ

2
i (ϑ

2 + τ2)

[∫ A

0

q2fQ(q)dq +A2(1− FQ(A))

]

×
min{j,d}∑

l=0

Ni,j−lpl. (29)

Proof. Using the moment calculation approach recommenced by Verlaak and Beirlant
(2003) and Albrecher et al. (2017), the first two moments of Equation (8) can be calcu-
lated, respectively, as the following

E(Y In−SPL) =

∫ A

0

qE(V )fQ(q)dq +A

∫ ∞

A

E(V )fQ(q)dq

= ϑ

∫ A

0

qfQ(q)dq + ϑA

∫ ∞

A

fQ(q)dq

= ϑ

[∫ A

0

qfQ(q)dq +A(1− FQ(A))

]
(30)

and

E((Y In−SPL)2) =

∫ A

0

q2E(V 2)fQ(q)dq +A2

∫ ∞

A

E(V 2)fQ(q)dq

= (ϑ2 + τ2)

[∫ A

0

q2fQ(q)dq +A2(1− FQ(M))

]
. (31)

These two observations complete the desired results.

From the theoretical viewpoint, one has to assume that the parameters ϑ and τ
are dependent on the given Q = q, but from the practical viewpoint, one may justify
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such an independent assumption, especially in a situation where the sums insured do not
fluctuate too much across policies, see Albrecher et al., (2017) for more details.

A simplification of Theorem (1) under the excess-of-loss reinsurance treaty, say XL,
is given by the following.

Proposition 3. Suppose the given reinsurance treaty in Theorem (1) is an excess-of-loss
treaty with retention level R. Then, under Theorem (1)’s assumptions, we have

E(XIn−XL
ij |NI) = (1− wi)γi

[
Γ(θ + 1, λR)

λΓ(θ)
+Rwi(1−

Γ(θ, λR)

Γ(θ)
)

]

×
min{j,d}∑

l=0

Ni,j−lpl (32)

MSEPNI
(XIn−XL

ij , X̂In−XL
ij ) ≈ (1− wi)γ

2
i

[
Γ(θ + 2, λR)

λ2Γ(θ)
+R2wi(1−

Γ(θ, λR)

Γ(θ)
)

]

×
min{j,d}∑

l=0

Ni,j−lpl, (33)

where Γ(θ + 1, λR) and Γ(θ, λR) stand for the incomplete Gamma function.

Proof. Since under the XL treaty, the contribution of an insurance company to the indi-

vidual claim Y
(k)
i,j−l,l is Y

(k)In−XL
i,j−l,l = min{Y (k)

i,j−l,l, R}. Therefore, the expected cedent claim
amount is equal to

E(Y
(k)In−XL
i,j−l,l ) = E(min{Y (k)

i,j−l,l, R})

=

∫ R

0

yf(y)dy +R(1− F (R))

=
Γ(θ + 1, λR)

λΓ(θ)
+Rwi(1−

Γ(θ, λR)

Γ(θ)
) (34)

where Γ(a, b) and Γ(a) stand for the incomplete Gamma function and the Gamma func-
tion, see Equation (6), respectively.

To obtain the desired result for the conditional MSEP, observe that such a condi-
tional MSEP is equal to V ar(XIn−XL

ij |NI). Now using the Wald’s identity for variance,
one may have

V ar(XIn−XL
ij |NI) = E(V ar(XIn−XL

ij |Npaid
i,j−l,l)|NI) + V ar(E(XIn−XL

ij |Npaid
i,j−l,l)|NI)

=

min{j,d}∑
l=0

E(Npaid
i,j−l,l|NI)V ar(Y

(k)In−XL
i,j−l,l )

+

min{j,d}∑
l=0

V ar(Npaid
i,j−l,l|NI)

[
E(Y

(k)In−XL
i,j−l,l )

]2
≈ (1− wi)γ

2
i (µ

2In + σ2In)

min{j,d}∑
l=0

Ni,j−lpl (35)

12
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From the fact that (Y
(k)In−XL
i,j−l,l )2 is a positive random variable along with Y

(k)In−XL
i,j−l,l =

min{Y (k)
i,j−l,l, R}, one may observe that

E((Y
(k)In−XL
i,j−l,l )2) =

∫ R

0

y2f(y)dy +R2(1− F (R))

=
Γ(θ + 2, λR)

λ2Γ(θ)
+R2wi(1−

Γ(θ, λR)

Γ(θ)
). (36)

The following two propositions provide the result of Theorem (1) under the QSXL
and the QSSPL treaties.

Proposition 4. Under the QSXL treaty with parameters C and R, Theorem (1) can be
restated as

E(XIn−QSXL
ij |NI) = (1− C)(1− wi)γi

[
Γ(θ + 1, λR)

τΓ(θ)
+Rwi(1−

Γ(θ, λR)

Γ(θ)
)

]

×
min{j,d}∑

l=0

Ni,j−lpl (37)

MSEPNI
(XIn−QSXL

ij , X̂In−QSXL
ij ) ≈ (1− C)2(1− wi)γ

2
i

[
Γ(θ + 2, λR)

λ2Γ(θ)
+R2wi(1−

Γ(θ, λR)

Γ(θ)
)

]

×
min{j,d}∑

l=0

Ni,j−lpl. (38)

Proof. The desired proof arrives by the fact that Y In−QSXL
i,j−l,l = (1− C)Y In−XL

i,j−l,l .

Proposition 5. Under the QSSPL treaty with parameters C and A, Theorem (1) can be
restated as

E(XIn−QSSPL
ij |NI) = (1− C)(1− wi)γiϑ

×

[∫ A

0

qfQ(q)dq +A(1− FQ(A))

]
min{j,d}∑

l=0

Ni,j−lpl (39)

MSEPNI
(XIn−QSSPL

ij , X̂In−QSSPL
ij ) ≈ (1− C)2(1− wi)γ

2
i (ϑ

2 + τ2)

×

[∫ A

0

q2fQ(q)dq +A2(1− FQ(A))

]
min{j,d}∑

l=0

Ni,j−lpl. (40)

Proof. The desired proof arrives by the fact that Y
(k)In−QSSPL
i,j−l,l = (1−C)Y

(k)In−SPL
i,j−l,l .

In a practical approach to predicting future liabilities, one has to estimate all un-
known parameters using available information in NI and DI . Before, considering any

13
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estimation method, we should note that

E(Xij |NI) = E(

Npaid
ij∑
k=1

Y
(k)
ij |NI)

= E(E(

Npaid
ij∑
k=1

Y
(k)
ij |N

paid
ij )|NI)

= µγi(1− wi)

min{j,d}∑
l=0

Ni,j−lpl. (41)

Clearly, the unconditional mean of Xij can be written as

E(Xij) = E(E(Xij |NI))

= µγi(1− wi)

min{j,d}∑
l=0

E(Ni,j−l|NI)pl

= α̃iβ̃j (42)

where α̃i = (1− wi)µγiαi and β̃j =
∑min{j,d}

l=0 βj−lpl.

In this article, we consider two different run-off triangles: one for the number of
reported claims Nij, say count triangle (with parameters αi and βj) and another for the
size of paid claims Xij, say paid triangle (with parameters α̃i and β̃j).

Based on Martinez-Miranda et al. (2015), which developed the double chain lad-
der method to estimate the parameters, the following develops a procedure to estimate
unknown parameters in the count triangle and the paid triangle.

Procedure 1. Given available information in NI and DI , one may estimate unknown
parameters of the Model Assumption (1) by the following steps:

Step 1: Employ the standard chain ladder model against Nij to estimate development

factor f̂j, for j = 1, 2, · · · , I − 1; Now:

Step 1-1: Estimates βj using

β̂0 =
1∏I−1

m=1 f̂m
β̂j =

f̂j − 1∏I−1
m=j f̂m

, for j = 1, 2, · · · , I − 1; (43)

Step 1-2: Estimates αi by

α̂i =

I−i∑
j=0

Nij

I−1∏
j=I−i+1

f̂j , for i+ j > I; (44)

Step 2: Employ the standard chain ladder model against Xij to estimate β̃j and α̃i for
j = 1, 2, · · · , I − 1 and i+ j < I.
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Step 3: Employ estimated β̂j and ˆ̃βj and the following system of equations to estimate
p̂0, · · · , p̂d.

β̃j =

d∑
l=0

βj−lpl for j = 0, 1, · · · , I − 1. (45)

Step 4: Parameter γi can be estimated by γ̂i = ˆ̃αi/α̂iµ̂.

Step 5: Set the number of non-zero payments in new run-off triangle and denote this
triangle by RI = {Rij : 1 ≤ i ≤ I, 0 ≤ j ≤ I − 1; i+ j ≤ I} . The variables Rij have

cross-classified mean E(Rij) = αR
i β

R
j for all (i, j). Estimate α̂R

i and β̂R
j by the chain

ladder algorithm. Then

ŵi = 1− α̂R
i

α̂i
. (46)

We should recall that all estimated p̂l has to be non-negative and satisfy
∑d

l=0 p̂l = 1.
Therefore, all negative values have to be removed and the last non-negative value has to
adjust to get condition

∑
l p̂l = 1. Moreover, in the case that two parameters θ and λ are

unknown, one may estimate them using the maximum likelihood method.

We should mention that the above procedure is just a simplified version of Martinez-
Miranda et al. (2015) result after imposing assumption A3.

4 Practical applications

This section shows how one may implement the above findings in a practical situa-
tion.

4.1 For a real data

We consider the car collision insurance loss portfolio from an Iranian private in-
surance company. The number of reported claims run-off triangle and the paid run-off
triangle are shown in Table 1 and Table 2, respectively. The triangular data included all
gross car collision claims incurred during the period. We consider 10 accident years over a
time horizon of 10 years. The data consists of claims reported and settled from 20 March
2010 to 19 March 2020. There are 25296 claims in the data set. For each claim, a detailed
record of the claim accident date, claim notification date, settlement date, and payment
amount of each transaction is provided. Also included in the data are many character-
istics of the policy, policyholder, claim, sum insured, issue date, and information about
the car. We consider the claim accident time, reporting time, settlement time, payment
amount, and sum insured as the key information for each claim. We distinguish between
two types of transactions in terms of developing a claim. A type 1 transaction refers to
the settlement of a claim without payment (zero-claims). A type 2 transaction refers to
the settlement of a claim by payment. Note that due to confidentiality, the insurance
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Table 1: The number of reported claims run-off triangle.

i\j 0 1 2 3 4 5 6 7 8 9
1 707 745 746 747 747 747 748 750 750 750
2 2147 2234 2235 2237 2238 2238 2274 2274 2275
3 2640 2730 2732 2734 2737 2756 2756 2756
4 2287 2396 2398 2400 2418 2418 2418
5 1877 1966 1982 1988 1988 1993
6 2918 3065 3070 3072 3076
7 3207 3307 3312 3318
8 3017 3083 3090
9 2940 3047
10 2573

Table 2: The paid run-off triangle.

i\j 0 1 2 3 4 5 6 7 8 9
1 752 868 869 875 875 875 875 875 875 875
2 3065 3440 3440 3477 3477 3477 3477 3477 3511
3 4938 5296 5318 5344 5360 5373 5373 5373
4 4825 5408 5422 5429 5432 5432 5432
5 4722 5340 5485 5504 5504 5504
6 8958 10168 10405 10417 10417
7 11340 12393 12432 12465
8 11677 11793 11939
9 13650 14537
10 19847

company’s data is multiplied by a fixed number.

Now, we consider the following null hypothesis

H0: Individual claims have been distributed according to the zero-inflated Gamma distribution

(Definition, 1)

The p-value of the Kolmogorov-Smirnov test (p− value = 0.1630) fails to reject the null
hypothesis at a confidence level of 95%.

After a visual investigation, we candidate the log-normal distribution for the ran-
dom sum insured. To validate such a conjecture, the following null hypothesis has been
considered.

H0: Random sum insured Q has been distributed according to a Log-normal distribution

Again, the Kolmogorov-Smirnov test (p− value = 0.0861) fails to reject the null hypoth-
esis at a confidence level of 95%.
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Table 3: Estimated parameters.

p̂l 0.9390 0.0427 0.0080 0.0023 0.0003 0.0004 0.0074 0.0000 0.0000 –
γ̂i 1 0.4623 0.5884 0.6778 0.88295 1.0154 1.1249 1.1591 1.4442 2.4359

f̂j 1.0377 1.0017 1.0007 1.0002 1.0002 1 1 1.0003 1 –
ˆ̃
fj 1.0832 1.0110 1.0032 1.0006 1.0006 1 1 1.0078 1 –

α̂R
i 745 2227 2725.92 2383.80 1969.66 3057.64 3304.27 3073.36 3033.44 2670.06

α̂i 750 2275 2756.91 2419.64 2003.39 3099.37 3349.80 3223.59 3086.28 2706.03
ˆ̃αi 875.09 3510.76 5414.57 5474.43 5546.96 10504.83 12577.97 12085.44 14878.12 22002.08

β̂j 0.9508 0.0364 0.0020 0.0013 0.0019 0.0023 0.0045 0.0003 0.0003 0
ˆ̃
βj 0.9020 0.0750 0.0108 0.0032 0.0006 0.0006 0 0 0.0077 0
ŵi 0.01 0.02 0.01 0.01 0.02 0.01 0.01 0.02 0.02 0.01

Table 4: Prediction of loss reserve under different scenarios.

i
The cedent company’s contribution under reinsurance treaty
QS SPL XL QSXL QSSPL
Reserve MSEP Reserve MSEP Reserve MSEP Reserve MSEP Reserve MSEP

3 1 3 2 17 2 10 1 3 1 4
4 3 8 5 56 6 34 3 8 3 14
5 36 132 67 874 73 529 36 132 34 219
6 85 376 156 2487 170 1504 85 376 78 622
7 133 655 246 4335 267 2621 133 655 123 1084
8 150 759 277 5023 300 3037 150 759 138 1256
9 271 1707 499 11293 541 6829 271 1707 249 2823
10 1272 13540 2346 89567 2545 54162 1272 13540 1173 22392

Total 1951 17181 3598 113653 3903 68727 1951 17182 1799 28413

Now we employ Procedure (1) and use the DCL package of the statistical software
R to estimate unknown parameters, Table 3 represents such estimates. Moreover, we
estimate the mean and variance of the loss degree as ϑ = 0.0641 and τ 2 = 0.0102,
respectively. The shape and rate parameters of Gamma distribution are estimated as
θ = 0.6856 and λ = 0.1929, respectively. So, the estimates of the mean and variance
of an individual (non-zero) claim severity are µ = 3.5541 and σ2 = 18.4249. The sum
insured (policy limit), Q, has the Log-normal distribution with mean− log = 3.7790 and
sd− log = 0.8764.

Also, we choose retentions 1 − C = 0.80 (proportionality factor in QS treaty),
A = 100 (retention line in surplus treaty), and R = 100 (retention level in XL treaty) as
an example. Determining the optimal retentions for quota share, surplus, and excess-of-
loss treaties will be considered in future research.

Table 4 represents a prediction: for future payments net of QS, SPL, XL, QSXL,
and QSSPL treaties.

4.2 For a simulation study

Simulation modeling provides an important method of analysis that is easily under-
stood. In order to evaluate the performance of our results in Section 3, we use simulation
analysis. This subsection presents the simulated loss development data.
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We generate synthetic data using Algorithm (1). This algorithm is designed based
on assumptions A1 to A4. For other possible simulation methods, see Stanard (1985),
Bühlmann et al. (1980), Vaughan (1998), Narayan and Warthen (2000), Schiegl (2002),
Stelljes (2006), among others.

Algorithm 1: Generate a Full IBNR table.

Input: Number of IBNR’s row/column I, parameters (αi, βj, pl, γi, θ, τ) as well

as distributional parameters for the single payment Y
(k)
ij .

Output: A full IBNR table which contains information about N report
ij , Y

(k)
ij and

Xij

1 Set i← 1;
2 while i ≤ I do
3 Use the Poisson distribution (with intensity αi) to generate the number of

claims for the accident year i, and call it Ni;
4 for j ← 0 to I − 1 do
5 Using the Multinomial distribution with parameters (Ni, β0, · · · , βI−1), to

generate vector (N report
i0 , · · · , N report

ij )′;

6 for l← 0 to d do
7 Use the Multinomial distribution with parameters (N report

ij , p0, · · · , pd),
to generate vector (Npaid

i,j−0,0, · · · , N
paid
i,j−d,d)

′;

8 Set Npaid
ij =

min(j,d)∑
l=0

Npaid
i,j−l,l;

9 for k ← 1 to Npaid
ij do

10 Generate single payments Y
(k)
i,j−l,l from the Gamma(θ, τ);

11 Set Xij =

Npaid
ij∑
k=1

d∑
l=1

Y
(k)
i,j−l,l;

12 Set i← i+ 1.

Using Algorithm (1) and R software, we simulated 100000 count/paid triangles.
Table 5 summarizes the mean of the cedent company’s loss reserve, under QS, SPL, XL,
QSSPL and QSXL reinsurance treaties, respectively.

Table (5)’s results indicate that: (1) the cedent’s loss reserves, under the QS treaty,
are significantly smaller than the SPL and XL treaties; (2) the MSEP under the XL
treaty is smaller than the SPL’s MSEP, therefore, the XL treaty is more effective than
the SPL treaty; (3) for all treaties, the retention level has a significant impact on the
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Table 5: Summary of the net loss reserve and the MSEP under the five treaties for 100000 simulated
count/paid triangles.

Treaties’ parameters
(C, A, R)

Mean of the net loss reserve (MSEP) under treaty
QS SPL XL QSXL QSSPL

(0.20, 30, 20) 3125(44014) 1842(23099) 3641(54895) 2913(35134) 1473(14784)
(0.25, 50, 50) 2930(38680) 2610(50251) 3905(68612) 2929(38593) 1957(28266)
(0.30, 75, 75) 2734(33695) 3220(83984) 3906(68764) 2735(33696) 2254(41152)
(0.40, 100, 100) 2344(24756) 3601(113721) 3906(68767) 2344(24757) 2161(40940)
(0.50, 150, 200) 1953(17192) 4022(159704) 3906(68769) 1953(17191) 2011(39925)

cedent’s loss reserve and the MSEP; (4) under two QSSPL and QSXL treaties, insurers
purchase higher reinsurance coverage. So, both the cedent’s loss reserve and the MSEP
are smaller than under the SPL and the XL treaties. These findings were also pointed
out by Veprauskaite and Adams (2017). Note that MSEP is used to check how close
predicts are to actual values. The lower the MSEP, the closer is predicted to the actual.
The lower value indicates a better prediction.

Figure 2 on Page 23 illustrates the cedent’s MSEP as a function of the retention
level for the SPL, the XL, the QS, the QSSPL, and the QSXL treaties. It shows that
under the QS treaty, by increasing the amount of proportionality factor, a large part of
the risk is transferred to the reinsurer. Therefore, the cedent’s MSEP is reduced. Under
the SPL treaty, it is observed that the lower the level of maintenance of the cedent, the
less its MSEP. As the maintenance of the cedent increases, its MSEP will also increase.
Under the XL treaty, the lower the level of maintenance of the cedent company, the
less it is responsible for compensation, so the less MSEP it has. The higher the level
of maintenance of the cedent company, the greater the risk borne by it, so MSEP will
also increase. As shown in Figure 2, the cedent’s MSEP is almost constant with an in-
creasing maintenance level. The reason for this is that we did not have many large claims.

Under the QSSPL treaty, the more the amount of the proportionality factor of the
quota share treaty increases, the higher the level of the cedent’s MSEP increases as the
retention level of the surplus treaty increases. Because in this case, the cedent keeps more
risk under the SPL treaty and will be responsible for compensation. So, it has to hold
more reserves, and it will also face more uncertainty. The lower the level of maintenance
of the surplus treaty, the greater the risk will be transferred to the reinsurer, and this
will reduce the cedent’s MSEP.

Under the QSXL treaty, as the amount proportionality factor of the quota share
treaty increases, the amount of the cedent’s MSEP decreases with increasing the mainte-
nance level of the XL treaty. This is because the number of large losses in our portfolio has
been low. If the portfolio includes many large claims, increasing the level of maintenance
of the XL treaty can increase the cedent’s MSEP.
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5 Conclusion and suggestions

Reinsurance has an important role in an insurance company’s solvency. It can re-
duce the probability of a cedent’s ruin. Insurance companies should use reinsurance to
reduce their risk. The type of reinsurance treaty has an important role in risk manage-
ment and investment decision-making. This article considers the problem of predicting
future payments whenever an insurance company uses a reinsurance treaty to manage its
risks. For this purpose, three classical reinsurance treaties (i.e. QS, SPL, and XL) and
two combinations of them (i.e. QSSPL and QSXL) were used in loss reserving modelling.
We showed how one can predict the cedent’s share of loss reserve without making a run-
off triangle of recovery payments from reinsurance treaties.

Practical implementation of our findings is illustrated against real data from a car
collision insurance loss portfolio and also simulated data. We found that: (1) type of
reinsurance treaty impacts on the insurer’s loss reserve; (2) The reinsurance retention
level impacts on the variability of the loss reserve; (3) The reinsurance’s volume reduces
the incidence of loss reserve uncertainty.

Results of this article may be extended to other reinsurance treaties. For example,
insurers may want to cover only large claims in a particular portfolio. In such cases,
LCR and ECOMOR reinsurance treaties can be used. Investigating the effect of large
claims on a cedent’s loss reserve will be considered in future research. It would be helpful
to evaluate the usefulness of this approach by considering the other individual models.
Moreover, it can be used to determine the optimal element of a given treaty, such as
retention level.
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Figure 2: Panel (a) shows the confidence interval for the complete triangles, Panels (b), (c), (d), (e), and (f) show
Mean of cedent’s MSEP, in 100000 simulations, under QS, SPL, XL, QSXL, and QSSPL treaties, respectively.
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