The Journal of Risk Management and Insurance Vol. 29 No. 2 (2025)

Exploring the Behaviour and Modelling

the Timeseries of Six (6) Securities

Oluwayemi Emmanuel Jeje

University of Lagos, Lagos, Nigeria
kemjah12@yahoo.com

Ismaila Adeleke

University of Lagos, Lagos, Nigeria
adeleke22000@gmail.com

Hamadu Dallah

University of Lagos, Lagos, Nigeria
dallaram2014@gmail.com

Received: August 3, 2025
Revised: September 27, 2025
Accepted: October 1, 2025

Abstract

This study explores the behaviour and models the time series of six selected securities in
Nigeria, comprising five sectoral indices and the Nigerian exchange rate (USDNGN), using
daily data from the Nigerian Exchange Limited (NGX). The objective is to evaluate the
empirical characteristics of these financial time series and identify appropriate models for
capturing their volatility dynamics. To achieve this, a suite of volatility models, including
ARCH, GARCH, EGARCH, TGARCH, GARCH-M, and PARCH, were applied to the dataset.
Model performance was assessed using widely recognized statistical criteria, including
Akaike’s Information Criterion (AIC), Schwarz’s Bayesian Information Criterion (SBIC),
Hannan-Quinn Information Criterion (HQIC), and Log-Likelihood values. The models were
evaluated for their ability to capture key features such as volatility clustering, asymmetry, and
persistence in returns. The results reveal that the logistic distribution provides a better fit for
the return distributions of the examined securities compared to traditional normal or
lognormal assumptions, due to its ability to account for heavy tails and skewness. Furthermore,
among the volatility models, those incorporating asymmetry and power effects, particularly
PARCH, demonstrated superior performance, highlighting the importance of model selection
in financial time series analysis. This research contributes to the growing literature advocating
for more flexible distributional assumptions and advanced volatility models in financial
modelling. The findings offer valuable insights for investors, financial analysts, and
policymakers seeking to enhance risk assessment and forecasting accuracy in emerging
markets like Nigeria.
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1 Introduction

Financial time series analysis plays a critical role in understanding asset price dynamics,
which is vital for informed decision-making by investors and policymakers. These series span
various asset classes, each with distinct characteristics and volatility patterns. While the log-
normal and normal distributions have traditionally been used to model asset prices and returns,
empirical evidence increasingly shows their limitations, especially in capturing extreme values
and fat tails (Levy & Levy, 2024). As a result, alternative distributions like the logistic and
generalized logistic distributions have gained prominence for their ability to better model the
skewness and heavy tails observed in real market data (Gray & French, 2008; Nidhin &
Chandran, 2013; Ahmad, 2018). This growing body of research underscores the need for more
flexible distributional frameworks that accurately reflect the empirical features of financial
markets.

To address limitations in capturing volatility clustering and leptokurtosis in financial
returns, Engle (1982) introduced the ARCH model, which was later extended by Bollerslev
(1986) through the development of GARCH. These models revolutionized financial
econometrics by allowing for time-varying volatility. The GARCH family, including EGARCH
(Nelson, 1991) and TGARCH models, offers robust frameworks for understanding persistent
and asymmetric volatility patterns. These models have been validated across a wide range of
financial markets. For instance, Marisetty (2024) found GARCH (1,1) effective in modelling
the volatility of major global indices, while Agunobi, Pam, and Dauda (2024) demonstrated
that volatility dynamics differ significantly between developed (UK) and emerging (Nigerian)
markets.

Accurately modelling the time series of financial securities is crucial for risk
management, portfolio optimization, and strategic planning. However, traditional models often
struggle to capture the intricate patterns observed in financial data, such as volatility clustering
and leverage effects. This limitation can lead to suboptimal forecasting and increased financial
risk. Moreover, the rapid evolution of financial markets, driven by technological advancements
and globalization, introduces additional complexities in modelling financial time series. The
integration of alternative data sources and the application of advanced machine learning
techniques present both opportunities and challenges in enhancing model accuracy and
reliability. Therefore, there is a pressing need to investigate and develop models that can
effectively capture the behaviour of financial securities, considering the multifaceted nature of
modern financial markets.

This paper seeks to investigate the behaviour and model the time series of six securities
in Nigeria, thus contributing to the body of literature on time series modelling and the
behaviour of Nigeria securities. By providing a reliable predictive tool, this research aims to
enhance decision-making for investors, financial managers, and policymakers in Nigeria,
ensuring that economic planning is more robust and informed. The remainder of the paper is
as follows: Section 2 presents a review of relevant literature, encompassing both theoretical
and empirical reviews. Section 3 outlines the data, estimation techniques, and evaluation
criteria. Section 4 discusses the results and provides detailed analysis, and Section 5 concludes
the study.
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2 Review of Relevant Literature
2.1  Empirical Review

Empirical analyses of financial indices often reveal that their price and return
distributions deviate from traditional assumptions. Regarding index prices, studies have found
that the log-normal distribution does not always provide an adequate fit. For example, a study
examining the S&P 500 Index over the period from 1950 to 2005 concluded that the log-normal
distribution poorly fits single-period continuously compounded returns, suggesting that future
prices may not follow a log-normal distribution (Levy & Levy, 2024). Similarly, when
assessing the returns of financial indices, the logistic distribution has been identified as a more
suitable model compared to the normal distribution. This is attributed to the logistic
distribution's heavier tails, which better capture the extreme values observed in financial
returns. For instance, research has demonstrated that the logistic distribution provides a better
fit for empirical option prices than the Black-Scholes model, which assumes log-normal returns
(Gray & French, 2008; Nidhin & Chandran, 2013).

Furthermore, the generalized logistic distribution has been recognized for effectively
capturing the fat-tailed nature of extreme financial returns. In studies involving indices such as
the Nikkei 225, this distribution outperformed traditional models like the normal and log-
normal distributions (Ahmad, 2018). Concurrently, researchers have examined the
performance of various GARCH-type models for modelling volatility dynamics. Marisetty
(2024) analysed five global indices and found that GARCH (1,1), EGARCH, and TGARCH
models successfully captured market fluctuations, especially during economic shocks like the
COVID-19 pandemic. Setiawan et al. (2020) further emphasized the importance of capturing
asymmetric volatility using models like APARCH, which outperformed other specifications in
predictive accuracy.

Several studies focusing on emerging markets have reinforced the effectiveness of
GARCH-type models in capturing persistent volatility. In the Nigerian stock market, Ekong
and Onye (2017) showed that symmetric and asymmetric GARCH models provided high
predictive accuracy, particularly when using the Generalized Error Distribution (GED). Kuhe
(2018) highlighted that including structural breaks and exogenous shocks in the models
reduced volatility persistence and improved forecasting performance. Nugroho et al. (2019)
and Gyamerah (2019) extended this analysis to both traditional and cryptocurrency markets,
confirming the superior performance of models like GJR-GARCH and tGARCH in capturing
asymmetries and heavy-tailed behaviour in highly volatile environments.

Other researchers have applied these models across various financial contexts.
Mandych et al. (2024) found that GIR-GARCH was particularly effective in modelling credit
market volatility in Ukraine, especially during crises. Liu and Hung (2010) observed that GJR-
GARCH and EGARCH provided superior forecasts for the S&P 100 index. Tanasya et al.
(2020) validated the robustness of asymmetric GARCH models in estimating Value at Risk
(VaR) and Expected Shortfall (ES), while Tripathy and Garg (2013) confirmed the prevalence
of leverage effects in six emerging markets. Studies by Roy and Shijin (2019) and Lee (2009)
further emphasized the relationship between market maturity, policy interventions, and the
effectiveness of different GARCH variants.
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The empirical studies reviewed provide strong evidence that GARCH-type models
remain indispensable for financial market volatility forecasting, with variations in performance
depending on asset classes, economic conditions, and structural characteristics. While GJR-
GARCH and EGARCH models are widely preferred for capturing asymmetric volatility
patterns, recent studies suggest that integrating exogenous macroeconomic indicators,
sentiment analysis, and high-frequency trading data can enhance predictive accuracy.
Furthermore, advances in hybrid modelling techniques, such as combining GARCH with deep
learning methods, provide new opportunities for improving financial risk estimation.

2.2 Theoretical Review
2.2.1 Efficient Market Hypothesis (EMH)

The Efficient Market Hypothesis (EMH), first introduced by Eugene Fama in 1970,
posits that financial markets are informationally efficient, meaning that asset prices reflect all
available information at any given time. As a result, no investor can consistently achieve returns
above the market average, as all information is already incorporated into current prices. Fama
(1991) elaborated on EMH by categorizing market efficiency into three forms: weak, semi-
strong, and strong. In the weak form, stock prices reflect all historical price data, implying that
technical analysis cannot provide any predictive advantage. The semi-strong form posits that
prices adjust to all publicly available information, such as earnings reports and news, meaning
that neither fundamental nor technical analysis can consistently outperform the market. The
strong form suggests that stock prices incorporate even private, insider information, thereby
ruling out any opportunity for insider trading to generate excess returns. While EMH has been
a central tenet of finance, criticisms have emerged from behavioural finance, which challenges
the assumption that all market participants behave rationally. For instance, the introduction of
behavioural finance has highlighted how cognitive biases and emotions can lead to market
inefficiencies (Malkiel, 2003).

Recent empirical research continues to explore the validity of EMH in different market
contexts. Malkiel (2003) critically examined the efficient market hypothesis and its critiques,
defending the idea that markets are generally efficient over the long term, despite anomalies
that occasionally arise. He emphasized that while anomalies like the January effect or
overreactions to news may appear, they do not undermine the overall efficiency of the market
in the long run. Similarly, Woo et al. (2020) reviewed global market anomalies and pointed out
that while EMH remains a useful framework for understanding financial markets, certain
phenomena, such as the day-of-the-week effect, contradict its assumptions. Rossi and Gunardi
(2018) investigated stock market anomalies in four European countries, revealing mixed
results. While some anomalies were observed in specific countries, their inconsistency across
time and markets cast doubt on the universal applicability of EMH. These findings highlight
that, while markets tend toward efficiency, investor behaviour and market-specific factors can
lead to deviations from perfect efficiency, suggesting that the full acceptance of EMH may
need reconsideration in light of new market dynamics and behavioural insights.

2.2.2 Random Walk Theory

The Random Walk Theory, initially proposed by Bachelier (1900) and later popularized
by Burton Malkiel (1973), suggests that stock price movements are inherently unpredictable
and follow a random path. According to this theory, it is impossible to forecast future stock
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prices based on historical data, as all available information is quickly reflected in the prices.
As a result, market participants cannot consistently outperform the market through techniques
such as technical analysis or stock selection. Malkiel (1973) famously stated that stock prices
follow a "random walk," implying that price changes are independent of past movements, with
no discernible pattern that can be exploited for profit.

Empirical studies have tested the validity of the Random Walk Theory across various
markets and time periods. Fama (1965) laid the foundation by testing the hypothesis in the U.S.
stock markets and concluded that stock prices follow a random walk, supporting the notion of
efficient markets where information is instantly incorporated into prices. Recent studies have
also contributed to the ongoing debate over the randomness of stock price movements. For
example, Fadda (2019) found evidence supporting the random walk hypothesis, indicating that
the price changes in these indexes were not predictable based on historical data. These findings
reinforce the notion that while stock prices may exhibit random behaviour in the long run, the
influence of investor psychology and market sentiment should not be overlooked.

The mathematical formulation of the Random Walk Theory begins by defining the price
of a financial asset at time t as P;. The model is typically expressed as:

P =P, +€ (1)
Where:

e P;: Asset price at time ¢t

e P,_j:Assetpriceattimet —1

e ¢€;: Random error term (innovation or shock) at time t, often assumed to be i.i.d.
(independent and identically distributed), with:

& ~N(0,0?) )

A more general version includes a drift component u, representing a constant expected return
or trend:

Po=p+ P 1+e 3)
Here, i shifts the mean direction of the walk (e.g., a positive average return over time).
Another version is in terms of returns, if R; denotes the return from t — 1 to t, then:
Re=P—P1=pt+e 4)

This implies that returns are white noise, i.e., they have no autocorrelation and are purely
random around a mean u.

2.2.3 Preferred Habitat Theory

The Preferred Habitat Theory, initially introduced by Culbertson (1957) and later
expanded by Modigliani and Sutch (1966), has gained significant attention from both central
banks and the financial sector (Vayanos & Vila, 2021). This theory explores the behaviour of
bond investors, asserting that they have distinct preferences regarding the maturities of bonds
they are willing to purchase. Although investors typically favour shorter-term bonds, they may
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be inclined to invest in longer-term securities if offered a higher yield to compensate for the
additional risks associated with such investments.

In contrast to the Market Segmentation Theory, which posits that investors select bonds
based purely on yield regardless of maturity, the Preferred Habitat Theory highlights the
importance of maturity preferences alongside yield considerations (Melvin & Norrbin, 2017).
This perspective suggests that investors' decisions are influenced by their specific investment
goals and their risk tolerance, which leads to a more structured approach to bond purchasing.
The theory helps understand how investor preferences influence the bond market and the
determination of interest rates. By acknowledging the segmented nature of the market, this
theory offers valuable insights into the dynamics of bond yield determination, as investors
require a premium to invest in long-term debt instruments. Ultimately, the Preferred Habitat
Theory provides a nuanced understanding of the complex relationship between maturity
preferences and yield in the bond market.

3 Data, Estimation Techniques and Evaluation Criteria

3.1 Data

The dataset comprises six (6) financial time series with daily frequency, all quoted on
the Nigerian Exchange Limited (NGX). Five (5) of these are sectoral and market-wide equity
indices namely, the All-Share Index (NGSEINDEX), Industrial Index (NGSEINDUS),
Banking Index (NGSEBNK10), Insurance Index (NGSEINSI10), and Oil & Gas Index
(NGSEOILGS), while the sixth series capture the Nigeria—United States exchange rate
(USDNGN). The sample spans from January 2, 2021 to December 31, 2024, a period selected
for its economic significance, as it encompasses key events such as the post-pandemic recovery,
shifts in monetary policy, and geopolitical developments that likely impacted market volatility
and investor behaviour. Daily closing prices were sourced from reputable public data providers,
including Bloomberg and Investing.com (see https://www.bloomberg.com/quote/ and
https://www.investing.com/), with no adjustments made for public holidays or non-trading
days. Although the relatively short sample period and reliance on daily frequency present
certain limitations such as constraints on long-term inference and omission of lower-frequency
cyclical trends, the approach is justified by the need for high-resolution data to capture short-
term volatility dynamics, clustering, and asymmetry. These features are especially pronounced
in the post-COVID financial environment and are best modelled using daily observations. The
return series, 1y, is computed as the natural logarithmic difference of consecutive daily prices,
1.e.,

Pt

7: = In (—) &)

Pt_q

where P; denotes the observed index or exchange rate at time t. This transformation yields the
continuously compounded daily returns used for volatility modelling and forecast evaluation.

3.2 Distribution Fitting

To identify the most appropriate probability distribution for the dataset, several
distributions were considered, including the normal, exponential, logistic, Weibull, and log-
normal distributions. The parameters of each distribution were estimated using Maximum
Likelihood Estimation (MLE), a widely accepted method for parameter estimation in statistical

6
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modelling. Once the parameters were estimated, the cumulative distribution function (CDF)
corresponding to each distribution was obtained. The CDF was then compared to the empirical
cumulative distribution function (ECDF) derived from the dataset, allowing for an evaluation
of how well the distributions fit the data.

To assess the goodness of fit, the Kolmogorov-Smirnov (KS) test was applied. The KS
test compares the empirical CDF of the data with the CDF of each candidate distribution. The
test statistic, D,,, is calculated as:

Dy, = sup|F,(x) — F(x)| (6)

Where F, (x) represents the ECDF of the data, and F(x) denotes the CDF of the candidate
distribution. A larger value of D,, indicates a poorer fit between the observed and theoretical
distributions.

The KS test returns a p-value, which is used to determine whether the null hypothesis,
that the data follows the distribution, can be rejected. A low p-value suggests that the data does
not conform to the distribution, while a high p-value supports the hypothesis that the data
follows the distribution. The distribution with the smallest KS statistic (or highest p-value) is
considered the best-fitting distribution.

33 Volatility Models

The study employed ARCH, GARCH-M, TGARCH, EGARCH, and PARCH models
for analysis. The inclusion of these models allows for a comprehensive analysis of financial
volatility by capturing key features such as volatility clustering (ARCH/GARCH), risk-return
trade-offs (GARCH-M), asymmetric effects of shocks (TGARCH/EGARCH), and flexible tail
behaviour (PARCH). Together, these variants enable nuanced modelling of persistence,
leverage effects, and nonlinearities inherent in financial time series, improving both
understanding and forecasting accuracy.

(a) Autoregressive Conditional Heteroskedasticity (ARCH):

ARCH was developed by in the first seminal paper of Engle (1982). Since then, a lot
of literature has emerged for the modelling of heteroskedasticity in financial time series. ARCH
models are used to model time-varying volatility (conditional heteroskedasticity). They capture
periods of high and low volatility in financial time series data, assuming that volatility is time
dependent.

Ve = U T € (7)
where,
€t = O0Z; (8)

v.: Return at time ¢
u: Mean of the process
€:: Residuals

o;: Conditional standard deviation (volatility)
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z;: White noise error term (e.g., normally distributed)

The conditional variance () is modeled as

of = ayg+ ar€f_q +ayel_y + -+ agel, 9)
(b) Generalized Autoregressive Conditional Heteroskedasticity (GARCH):

In practical applications of the ARCH (p) model, it often turned out that the number of
lag p needed was rather large. To cater for this, Bollerslev (1986) introduced the GARCH (p,q)
method by including the lag of the conditional variance into the ARCH model.

The GARCH model is an extension of the ARCH model that incorporates both past
squared returns (ARCH terms) and past volatilities (GARCH terms) to model time-varying
volatility. The model combines the autoregressive component of the ARCH model with a
moving average component:

o =ay+ XL, et + Z?:l Biol;
(10)
where,
o? is the conditional variance
a; and fB; are parameters to be estimated.
(c) Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH):

Introduced by Nelson (1991), the EGARCH model address some limitations of
GARCH by allowing for asymmetric effects of positive and negative shocks on volatility. This
model ensures that the variance remains positive at all times by modeling it in an exponential
form.
log (07) = o+ B7.; & =+ T, Bylog (o)

(11)

The logarithmic transformation ensures that the conditional variance (o) is always positive.

(d) Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH):

Developed by Engle and Ng (1993), the TGARCH model extends the GARCH model
by allowing for different impacts of positive and negative returns on volatility (asymmetric
volatility). This model introduces a threshold variable to distinguish the effects of positive and
negative shocks.

of = ay+ Z?:l aef_; + Z?zl ,Bjo'tz—j +y(Ile,—1 < 0])ef4
(12)
where,

I[e;—, < 0] is an indicator function that takes the value 1 if the past shock is negative (bad
news) and 0 if it is positive (good news), and y represents the asymmetry parameter.
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(e) Generalized Autoregressive Conditional Heteroskedasticity in Mean (GARCH-M):

The GARCH-M model is an extension of the GARCH model that allows the conditional
variance to affect the mean equation. The model was introduced by Engle, Lilien and Robins
(1983), and it is particularly useful in financial models where the risk (volatility) influences the
expected return. The model can be expressed as

Ve =pu+ Ao, + €
(13)

where A is the risk premium, and the conditional variance 2 follows a GARCH process. The
volatility enters the mean equation, allowing risk to affect the expected return.

® Power ARCH (PARCH):

The PARCH model generalizes the ARCH model by allowing for the conditional
variance to depend on powers of the past squared residuals. This provides greater flexibility to
model different degrees of volatility persistence.

of = ap + Z?:l aileq_4|P
(14)

where p is a parameter that controls the degree of persistence in volatility. When p = 2, the
PARCH model reduces to the standard ARCH model.

34 Performance Criteria

The performance of the fitted model is evaluated using several well-established
statistical criteria, namely, Akaike’s Information Criterion (AIC), Schwartz’s Bayesian
Information Criterion (SBIC), Hannan-Quinn Information Criterion (HQIC), and Log-
Likelihood. These criteria, defined in equations 15-18 below, are essential for understanding
how well the model fits the data while accounting for model complexity (Akaike, 1974;
Schwarz, 1978; Hannan & Quinn, 1979; Bollerslev, 1986; Dallah & Adeleke, 2009).

The AIC is a widely used measure for model selection that balances goodness of fit and
model complexity. Specifically, it provides a relative ranking of models based on their ability
to explain the observed data, with a penalty for excessive complexity. When comparing
multiple models, the one with the lowest AIC is considered the best, as it indicates a model that
explains the data efficiently without overfitting. The AIC is useful in model selection because
it strikes a balance between goodness of fit and parsimony, making it a robust tool for time
series analysis and forecasting.

The Schwartz’s Bayesian Information Criterion (SBIC), is another widely used
criterion in model selection, which imposes a stronger penalty for model complexity compared
to AIC, making it more conservative when selecting a model. This characteristic makes the
SBIC especially suitable when working with large datasets or when the risk of overfitting is a
concern. Like the AIC, the SBIC allows for the comparison of different models, with the model
exhibiting the lowest SBIC being considered the best. However, the more severe penalty for
additional parameters makes the SBIC preferable when the aim is to identify a more
parsimonious model.
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The Hannan-Quinn Information Criterion (HQIC), is another model selection criterion
that is less sensitive to sample size than the AIC and BIC. Similar to the AIC and SBIC, it
penalizes models with excessive complexity, but it does so in a way that is less sensitive to
sample size compared to the AIC and SBIC. The HQC provides a reasonable balance between
model fit and complexity, offering a valuable alternative when the sample size is small and
ensuring that the chosen model is not too complex for the available data.

The Log-Likelihood (LL) is a measure of how well the model explains the observed
data. For GARCH models, it is derived from the likelihood of the residuals and their conditional
variances. The higher the log-likelihood, the better the model fits the data.

These criteria offer a comprehensive framework for evaluating and comparing different
models. Informed decisions are made by selecting the model that not only fits the data well but
also avoids overfitting by penalizing unnecessary complexity. Each criterion has its strengths,
and when used in combination, they provide a robust methodology for model selection and
performance evaluation.

AIC = —2L(0) + 2k

(15)
SBIC = —2L(6) + kIn(n)
(16)
HQIC = —2L(0) + 2kIn(In(n))
(17)
£0) = —2log(2m) - 1 51, log(hy) — 230, %
(18)
Where:

L(0) is the log-likelihood;

n the number of observations;

h; is the conditional variance at time t (calculated from the GARCH model).
e; is the residual at time t

0 are the parameters of the GARCH model.
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4 Results and Discussion

4.1 Results of Fitted Distribution using QuickFit

The dataset for the various index data were fitted to a distribution to ascertain the distribution
with best fit. The result of fitted distribution to the price and return of each index is below.
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Figure 4.1: Fitted distributions of six securities
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For the index price, four of the six indexes followed a lognormal 3P distribution and
the remaining two followed a Frechet 3P distribution. In a similar manner, the logistic
distribution is the distribution that demonstrates a superior fit for the returns of the indexes,
which is in tandem with many literatures that showed that financial returns follow a logistic

distribution (see. Levy & Levy, 2024; Ahmad, 2018).

4.2

GARCH Models

The table below displayed the descriptive statistics of six (6) securities.

Table 4.1: Descriptive Statistics for the return of various securities

ls)tzstci:g’ctsve NGSEINDEX | NGSEINDUS | NGSEBNK10 | NGSEINS10 | NGSEOILG5 | USDNGN
Mean 0.000956 0.000615 0.001163 0.001457 0.002623 0.001574
Median 0.000275 | 0.00000397 0.000552 0.001063 0.000000 0.000000
Maximum 0.052325 0.097166 0.265205 0.229837 0.160146 0.319694
Minimum -0.032267 -0.060219 20.146256|  -0.148753 -0.14124 -0.12682
Standard 0.007636 0.014277 0.018866 0.017645 0.014905 0.022502
Deviation

Skewness 0.665744 1.299363 2.597611 1.632875 1.680092 5.785262
Kurtosis 9.009405 17.254450 48.27561 37.46889 31.2437 78.91453
Jarque-Bera 1561.211 8651.390 85584.39| 4939931 33337.44 255777.7
Probability 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

NGSEINDEX is the Nigeria All Share Index, NGSEINDUS is the Nigeria Industrial Index, NGSEBNKI0 is the
Nigeria Banking Sector Index, NGSEINSI0 is the Nigeria Insurance Sector Index, NGSEOILGS is the Nigeria
Oil Sector Index, and USDNGN is the exchange rate for United States Dollar to Nigerian Naira.

Figure 4.1 illustrates a series of two distinct line charts that provide a comprehensive
view of the behaviour of each of six securities over time. The first chart displays the price
movements of each security, offering a visual representation of how each security’s price has
evolved throughout the period under consideration. This chart helps to highlight trends,
fluctuations, and any notable price changes, allowing for a deeper understanding of the market
performance of these assets. The second chart, which is positioned alongside the first, presents
the returns of each security. The return chart is particularly useful for assessing the risk and
performance of the securities.
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Figure 4.2: Line chart for six securities
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Table 4.2: Stationarity Test for the securities

ADF test (No differencing)

Bond maturities

Statistic p-value
NGSEINDEX -25.359190 0.0000
NGSEINDUS -10.73344 0.0000
NGSEBNKI10 -24.34005 0.0000
NGSEINS10 -21.48712 0.0000
NGSEOILGS -27.63416 0.0000
USDNGN -21.15699 0.0000

Source: Authors computation

To test for stationarity, the Augmented Dickey-Fuller (ADF) test was done. For all the
securities, the ADF test results strongly suggest that the null hypothesis of a unit root can be
rejected at conventional significance levels (e.g., 1%, 5%, or 10%), as evidenced by the highly
negative t-statistics and p-values of 0.0000. This indicates that the returns of these securities
are stationary without requiring differencing, and they are well-suited for modelling and
forecasting, as their statistical properties do not change over time.

Table 4.3: Test of Heteroskedasticity

ggfcg NGSEINDEX | NGSEINDUS [ NGSEBNK10 | NGSEINS10 | NGSEOILGS5 | USDNGN
F-statistic 24.46874 151.6077 45.09981 15.42005 104.0162 10.84662
p-value 0.0000 0.0000 0.0000 0.0001 0.0000 0.0010

Source: Author’s computation

The p-value from table 4.3 are statistically significant. This suggests the presence of
ARCH effects, meaning the variance of the residuals is time-varying, conditional on past
shocks, and exhibits volatility clustering, which implies that the securities may require a model
like GARCH to account for their time-varying volatility.

Table 4.4 reports model performance across multiple financial indices and the exchange
rate (USD/NGN), using standard model selection criteria such as Akaike Information Criterion
(AIC), Schwarz Bayesian Information Criterion (SBIC), Hannan-Quinn Information Criterion
(HQIC), and log-likelihood (LL). The analysis reveals that no single GARCH-type model
dominates across all datasets, underscoring the importance of model selection in relation to the
distinct volatility dynamics embedded within each time series. Across all datasets, the basic
ARCH model consistently exhibits higher AIC, SBIC, and HQIC values compared to its
extensions, indicating that GARCH-type models provide a superior fit. For the NGSEINDEX
dataset, the PARCH model exhibits the lowest AIC (-7.107352), values, along with the highest
log-likelihood (3518.032), suggesting it offers the best performance among the evaluated
models.
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Table 4.4: Performance Metrics of Fitted Models for various Securities

Statistic
Data Models AIC SBIC HQIC LL
ARCH 7026854 | -7.007034 | 7.019317 | 3475.266
GARCH 7105678 | -7.080903 | -7.096256 | 3515.205
EGARCH 7.095913 | -7.066182 | -7.084606 |  3511.381
NGSEINDEX == A RCH 7106911 | -7.07718 | -7.095604 | 3516.814
GARCH-M | 7.106847 | -7.077116 |  -7.09554 | 3516.782
PARCH 7107352 | -7.072666 | -7.094161 | 3518.032
ARCH 5.024672 | 5004851 | 5.017134|  2930.788
GARCH 5058745 | -5.933960 | -5.049323 | 2948.62
EGARCH 5054769 | -5.925038 | -5.943462 | 2947.656
NGSEINDUS  FreaRcH 5.063548 | -5.933817 | -5.952242 | 2951.993
GARCH-M 506619 | -5.03646 | -5.954884 |  2953.208
PARCH 5.062053 | -5.927367 | -5.048862 | 2952254
ARCH 5505695 | -5.575875 | -5.588158 | 2768.273
GARCH 5731072 | -5.706296 | -5.72165 | 2836.15
EGARCH 5722356 | 5.692626 | 571105 |  2832.844
NGSEBNKIO s ReH 5730979 | -5.701248 | -5.719672 |  2837.104
GARCH-M | 5729611 |  -5.69988 | -5.718304 | 2836428
PARCH 5732487 |  -5.697801 | -5.719296 |  2838.848
ARCH 5502804 | 5573073 | -5.585356 | 2766.89
GARCH 5712662 | -5.687886 | -5.70324 | 2827.055
EGARCH 5720093 | -5.699363 | 5.717787|  2836.172
NGSEINSIO "+ 5 A RCH 5733759 | -5.704020 | -5.722453 | 2838.477
GARCH-M | 5711189 | -5.681458 | -5.609883 |  2827.327
PARCH 5735537 | -5.700851 | -5.722346 |  2840.355
ARCH 5728311 -5.70849 | 5.720773 | 2833.786
GARCH 5755965 | 573119 | -5.746543 | 2848.447
EGARCH 5.840282 | -5.810551 | -5.828975 |  2891.099
NGSEOILGS  FreaRcH 5801805 | -5.772074 | -5.790499 |  2872.092
GARCH-M | 5754108 | -5.724377| -5.742802 |  2848.529
PARCH 75.840866 | -5.80618 | -5.827675 |  2892.388
ARCH 5.056569 | -5.037543 | -5.049352 | 2633.416
GARCH 5265437 | 5241654 | 5256415 |  2743.027
USDNGN EGARCH 5509764 | 5481224 | -5.498937 |  2871.077
TGARCH 5304203 | -5.275663 | -5.203376 |  2764.186
GARCH-M | 5271936 | -5.243395| -5261109| 2747.407
PARCH 5310698 | -5.277401 | -5.208067 |  2768.563

Source: Author’s computation
AIC is Akaike Information Criterion, SBIC is Schwarz Bayesian Information Criterion, HOC

is Hannan-Quinn Information Criterion, and LL is Log-Likelihood.

A similar trend is observed in the NGSEINDUS dataset, where the GARCH-M model
outperforms others with the lowest AIC (-5.96619), SBIC (-5.93646), HQIC (-5.954884), and
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highest log-likelihood (2953.298). In the NGSEBNK 10 and NGSEINS10 datasets, the PARCH
model consistently exhibits the best performance, as indicated by the lowest AIC and highest
LL values (2838.848 and 2840.355, respectively). This suggests that PARCH may better
capture the volatility structure in these financial series. For NGSEOILGS, both the PARCH
and EGARCH models perform well, with PARCH displaying the lowest AIC (-5.840866) and
the highest LL (2892.388), closely followed by EGARCH. This suggests that asymmetric
effects may be present in oil-related financial data. Finally, for the USDNGN exchange rate
data, the EGARCH model demonstrates superior performance, as reflected in the lowest AIC
(-5.509764) and the highest LL (2871.077). This result aligns with the understanding that
exchange rate volatility often exhibits asymmetric properties, which EGARCH models are
designed to capture.

The Power ARCH (PARCH) model demonstrates superior performance for the banking
and insurance sector indices. This result is theoretically consistent with the nature of financial
return series in these sectors, which often exhibit volatility clustering, long memory, and
leverage effects. Unlike standard GARCH models, the PARCH framework introduces a
flexible power term (J) that allows the conditional standard deviation to respond nonlinearly
to past innovations. This is particularly valuable in capturing persistent and asymmetric
volatility patterns typical in highly regulated and macro-sensitive sectors like banking and
insurance. These sectors are also exposed to systemic risk and policy interventions, which can
lead to sharp volatility swings that are better captured through the additional flexibility
embedded in the PARCH structure. The superior performance of the Exponential GARCH
(EGARCH) model in modelling the USD/NGN exchange rate is consistent with the known
features of exchange rate dynamics in emerging markets. Exchange rate volatility, particularly
in economies such as Nigeria’s, is often driven by external shocks, speculative pressures,
political risk, and macroeconomic asymmetries, factors that lead to nonlinear and asymmetric
responses in volatility. EGARCH explicitly models the log of conditional variance and allows
for asymmetric effects, whereby positive and negative shocks of equal magnitude have
differing impacts on volatility. The USD/NGN exchange rate has historically exhibited higher
sensitivity to negative news (e.g., oil price declines, devaluation fears, policy uncertainty) than
to positive developments. The EGARCH model, by design, captures such effects through its
leverage term, which accounts for the sign and magnitude of past shocks. Thus, its superior
performance is not only statistically significant but also econometrically appropriate given the
stylized facts of exchange rate behaviour in developing economies.

Table 4.5: Prediction performance for models obtained for various Securities

Statistic

Data Models AIC SBIC HQIC LL

NGSEINDEX PARCH -7.107352 -7.072666 -7.094161 3518.032
NGSEINDUS GARCH-M -5.96619 -5.93646 -5.954884 2953.298
NGSEBNK10 PARCH -5.732487 -5.697801 -5.719296 2838.848
NGSEINS10 PARCH -5.735537 -5.700851 -5.722346 2840.355
NGSEOILGS PARCH -5.840866 -5.80618 -5.827675 2892.388
USDNGN EGARCH -5.509764 -5.481224 -5.498937 2871.077

Source: Author’s computation
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The results indicate that more flexible GARCH-type models, particularly PARCH and
EGARCH, tend to outperform the basic ARCH model across various financial time series.
These findings emphasize the importance of incorporating asymmetric and power effects in
modelling financial market volatility. The comparative analysis of ARCH and its GARCH
extensions across various datasets aligns with existing literature emphasizing the efficacy of
GARCH-type models in capturing financial time series volatility. For instance, Nugroho et al.
(2019) conducted an empirical study comparing GARCH, GARCH-M, GJR-GARCH, and log-
GARCH models using daily data from indices such as the DJIA and S&P 500, concluding that
the GJR-GARCH model demonstrated the best overall fit to the data. Similarly, Ekong and
Onye (2017) investigated the Nigerian stock market and found that GARCH(1,1) and
augmented EGARCH(1,1) models, particularly under the Generalized Error Distribution
(GED), exhibited superior forecasting capabilities. However, in a study by Setiawan et al.
(2020), the study concluded that the Asymmetric Power GARCH (APARCH) model
outperformed other asymmetric models, including EGARCH and TGARCH, in modelling
daily stock return volatility, as evidenced by lower AIC and SBIC values. These findings
corroborate the current results, where models like PARCH and EGARCH demonstrated
superior performance metrics, underscoring the importance of accommodating asymmetries in
financial volatility modelling.

5 Conclusion

This study set out to examine the behaviour and model the time series of six securities
in Nigeria using daily data from the NGX. Volatility models including ARCH, GARCH,
EGARCH, TGARCH, GARCH-M, and PARCH were applied, with performance assessed
using AIC, SBIC, HQIC, and Log-Likelihood criteria. The analytical process involved fitting
and comparing these models to evaluate their effectiveness in capturing the dynamics of each
time series. The analysis of financial returns reveals that the logistic distribution offers a more
accurate representation of the returns of the examined indexes, aligning with findings from
previous studies (e.g., Levy & Levy, 2024) that highlight its effectiveness in capturing the
empirical characteristics of financial market behaviour. The heavy tails and skewness observed
in the returns suggest that the logistic distribution is better suited to model extreme values and
fluctuations in the market compared to more traditional distributions like the normal or
lognormal. This reinforces the growing recognition in the literature that the logistic
distribution, with its ability to account for the non-normal features of financial returns, offers
a more accurate and reliable framework for understanding and forecasting financial market
dynamics. Consequently, this study supports the need for adopting flexible distributional
models, such as the logistic distribution, to enhance the precision of financial modelling and
risk assessment.

The comprehensive analysis of ARCH and its various GARCH extensions across
multiple financial datasets underscores the critical importance of selecting appropriate
volatility models to accurately capture the inherent dynamics of financial time series. The
findings indicate that models incorporating asymmetry and power effects, such as the PARCH
and EGARCH models, often outperform the standard ARCH model. This is evidenced by their
superior performance metrics, including lower values of the Akaike Information Criterion
(AIC), Schwarz Bayesian Information Criterion (SBIC), and Hannan-Quinn Information
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Criterion (HQIC), as well as higher log-likelihood (LL) values. These model-specific insights
provide practical guidance for portfolio managers in selecting volatility forecasting tools
tailored to different asset classes and sectors, thereby supporting more informed investment
decisions and risk-adjusted asset allocation strategies.

These results are consistent with existing literature that emphasizes the efficacy of
asymmetric GARCH models in capturing financial time series volatility. For instance, Nugroho
et al. (2019) conducted an empirical study comparing GARCH, GARCH-M, GJR-GARCH,
and log-GARCH models using daily data from indices such as the DJIA and S&P 500. Their
findings indicated that the GJR-GARCH model yielded the most satisfactory fit, highlighting
the significance of accounting for asymmetries in volatility modelling. Similarly, Ekong and
Onye (2017) investigated the Nigerian stock market and found that GARCH(1,1) and
augmented EGARCH(1,1) models, particularly under the Generalized Error Distribution
(GED), exhibited superior forecasting capabilities. This underscores the effectiveness of
models that capture asymmetries and leverage effects in financial time series.

Furthermore, Gyamerah (2019) examined the volatility of Bitcoin using various
GARCH-type models and found that the TGARCH model, which accounts for asymmetries,
was the most effective in capturing the unique characteristics of Bitcoin returns. This
underscores the importance of considering asymmetric models when dealing with financial
assets that exhibit non-linear behaviours. The superior performance of asymmetric GARCH
models can be attributed to their ability to capture leverage effects, where negative shocks have
a more pronounced impact on volatility than positive shocks of the same magnitude. This
characteristic is crucial for accurate risk assessment and forecasting in financial markets. From
a policy standpoint, the sector-specific volatility patterns revealed by the preferred models offer
regulators empirical tools for monitoring financial stability, designing targeted interventions,
and anticipating systemic risk transmission.

The findings from this analysis align with the broader consensus in financial
econometrics that incorporating asymmetries and non-linearities leads to more robust and
reliable volatility modelling. The empirical evidence from this study and supporting literature
highlights the necessity of employing advanced GARCH-type models that account for
asymmetries and power effects to effectively model and forecast volatility in financial time
series. This approach enhances the accuracy of risk management strategies and investment
decisions in both developed and emerging financial markets.
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