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Abstract 

This study explores the behaviour and models the time series of six selected securities in 

Nigeria, comprising five sectoral indices and the Nigerian exchange rate (USDNGN), using 

daily data from the Nigerian Exchange Limited (NGX). The objective is to evaluate the 

empirical characteristics of these financial time series and identify appropriate models for 

capturing their volatility dynamics. To achieve this, a suite of volatility models, including 

ARCH, GARCH, EGARCH, TGARCH, GARCH-M, and PARCH, were applied to the dataset. 

Model performance was assessed using widely recognized statistical criteria, including 

Akaike’s Information Criterion (AIC), Schwarz’s Bayesian Information Criterion (SBIC), 

Hannan-Quinn Information Criterion (HQIC), and Log-Likelihood values. The models were 

evaluated for their ability to capture key features such as volatility clustering, asymmetry, and 

persistence in returns. The results reveal that the logistic distribution provides a better fit for 

the return distributions of the examined securities compared to traditional normal or 

lognormal assumptions, due to its ability to account for heavy tails and skewness. Furthermore, 

among the volatility models, those incorporating asymmetry and power effects, particularly 

PARCH, demonstrated superior performance, highlighting the importance of model selection 

in financial time series analysis. This research contributes to the growing literature advocating 

for more flexible distributional assumptions and advanced volatility models in financial 

modelling. The findings offer valuable insights for investors, financial analysts, and 

policymakers seeking to enhance risk assessment and forecasting accuracy in emerging 

markets like Nigeria. 
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1 Introduction 

Financial time series analysis plays a critical role in understanding asset price dynamics, 

which is vital for informed decision-making by investors and policymakers. These series span 

various asset classes, each with distinct characteristics and volatility patterns. While the log-

normal and normal distributions have traditionally been used to model asset prices and returns, 

empirical evidence increasingly shows their limitations, especially in capturing extreme values 

and fat tails (Levy & Levy, 2024). As a result, alternative distributions like the logistic and 

generalized logistic distributions have gained prominence for their ability to better model the 

skewness and heavy tails observed in real market data (Gray & French, 2008; Nidhin & 

Chandran, 2013; Ahmad, 2018). This growing body of research underscores the need for more 

flexible distributional frameworks that accurately reflect the empirical features of financial 

markets. 

To address limitations in capturing volatility clustering and leptokurtosis in financial 

returns, Engle (1982) introduced the ARCH model, which was later extended by Bollerslev 

(1986) through the development of GARCH. These models revolutionized financial 

econometrics by allowing for time-varying volatility. The GARCH family, including EGARCH 

(Nelson, 1991) and TGARCH models, offers robust frameworks for understanding persistent 

and asymmetric volatility patterns. These models have been validated across a wide range of 

financial markets. For instance, Marisetty (2024) found GARCH (1,1) effective in modelling 

the volatility of major global indices, while Agunobi, Pam, and Dauda (2024) demonstrated 

that volatility dynamics differ significantly between developed (UK) and emerging (Nigerian) 

markets. 

Accurately modelling the time series of financial securities is crucial for risk 

management, portfolio optimization, and strategic planning. However, traditional models often 

struggle to capture the intricate patterns observed in financial data, such as volatility clustering 

and leverage effects. This limitation can lead to suboptimal forecasting and increased financial 

risk. Moreover, the rapid evolution of financial markets, driven by technological advancements 

and globalization, introduces additional complexities in modelling financial time series. The 

integration of alternative data sources and the application of advanced machine learning 

techniques present both opportunities and challenges in enhancing model accuracy and 

reliability. Therefore, there is a pressing need to investigate and develop models that can 

effectively capture the behaviour of financial securities, considering the multifaceted nature of 

modern financial markets. 

This paper seeks to investigate the behaviour and model the time series of six securities 

in Nigeria, thus contributing to the body of literature on time series modelling and the 

behaviour of Nigeria securities. By providing a reliable predictive tool, this research aims to 

enhance decision-making for investors, financial managers, and policymakers in Nigeria, 

ensuring that economic planning is more robust and informed. The remainder of the paper is 

as follows: Section 2 presents a review of relevant literature, encompassing both theoretical 

and empirical reviews. Section 3 outlines the data, estimation techniques, and evaluation 

criteria. Section 4 discusses the results and provides detailed analysis, and Section 5 concludes 

the study. 

 



The Journal of Risk Management and Insurance       Vol. 29  No. 2 (2025) 

 

3 
 

2 Review of Relevant Literature 

2.1 Empirical Review 

Empirical analyses of financial indices often reveal that their price and return 

distributions deviate from traditional assumptions. Regarding index prices, studies have found 

that the log-normal distribution does not always provide an adequate fit. For example, a study 

examining the S&P 500 Index over the period from 1950 to 2005 concluded that the log-normal 

distribution poorly fits single-period continuously compounded returns, suggesting that future 

prices may not follow a log-normal distribution (Levy & Levy, 2024). Similarly, when 

assessing the returns of financial indices, the logistic distribution has been identified as a more 

suitable model compared to the normal distribution. This is attributed to the logistic 

distribution's heavier tails, which better capture the extreme values observed in financial 

returns. For instance, research has demonstrated that the logistic distribution provides a better 

fit for empirical option prices than the Black-Scholes model, which assumes log-normal returns 

(Gray & French, 2008; Nidhin & Chandran, 2013). 

Furthermore, the generalized logistic distribution has been recognized for effectively 

capturing the fat-tailed nature of extreme financial returns. In studies involving indices such as 

the Nikkei 225, this distribution outperformed traditional models like the normal and log-

normal distributions (Ahmad, 2018). Concurrently, researchers have examined the 

performance of various GARCH-type models for modelling volatility dynamics. Marisetty 

(2024) analysed five global indices and found that GARCH (1,1), EGARCH, and TGARCH 

models successfully captured market fluctuations, especially during economic shocks like the 

COVID-19 pandemic. Setiawan et al. (2020) further emphasized the importance of capturing 

asymmetric volatility using models like APARCH, which outperformed other specifications in 

predictive accuracy. 

Several studies focusing on emerging markets have reinforced the effectiveness of 

GARCH-type models in capturing persistent volatility. In the Nigerian stock market, Ekong 

and Onye (2017) showed that symmetric and asymmetric GARCH models provided high 

predictive accuracy, particularly when using the Generalized Error Distribution (GED). Kuhe 

(2018) highlighted that including structural breaks and exogenous shocks in the models 

reduced volatility persistence and improved forecasting performance. Nugroho et al. (2019) 

and Gyamerah (2019) extended this analysis to both traditional and cryptocurrency markets, 

confirming the superior performance of models like GJR-GARCH and tGARCH in capturing 

asymmetries and heavy-tailed behaviour in highly volatile environments. 

Other researchers have applied these models across various financial contexts. 

Mandych et al. (2024) found that GJR-GARCH was particularly effective in modelling credit 

market volatility in Ukraine, especially during crises. Liu and Hung (2010) observed that GJR-

GARCH and EGARCH provided superior forecasts for the S&P 100 index. Tanasya et al. 

(2020) validated the robustness of asymmetric GARCH models in estimating Value at Risk 

(VaR) and Expected Shortfall (ES), while Tripathy and Garg (2013) confirmed the prevalence 

of leverage effects in six emerging markets. Studies by Roy and Shijin (2019) and Lee (2009) 

further emphasized the relationship between market maturity, policy interventions, and the 

effectiveness of different GARCH variants. 
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The empirical studies reviewed provide strong evidence that GARCH-type models 

remain indispensable for financial market volatility forecasting, with variations in performance 

depending on asset classes, economic conditions, and structural characteristics. While GJR-

GARCH and EGARCH models are widely preferred for capturing asymmetric volatility 

patterns, recent studies suggest that integrating exogenous macroeconomic indicators, 

sentiment analysis, and high-frequency trading data can enhance predictive accuracy. 

Furthermore, advances in hybrid modelling techniques, such as combining GARCH with deep 

learning methods, provide new opportunities for improving financial risk estimation. 

2.2 Theoretical Review 

2.2.1 Efficient Market Hypothesis (EMH) 

The Efficient Market Hypothesis (EMH), first introduced by Eugene Fama in 1970, 

posits that financial markets are informationally efficient, meaning that asset prices reflect all 

available information at any given time. As a result, no investor can consistently achieve returns 

above the market average, as all information is already incorporated into current prices. Fama 

(1991) elaborated on EMH by categorizing market efficiency into three forms: weak, semi-

strong, and strong. In the weak form, stock prices reflect all historical price data, implying that 

technical analysis cannot provide any predictive advantage. The semi-strong form posits that 

prices adjust to all publicly available information, such as earnings reports and news, meaning 

that neither fundamental nor technical analysis can consistently outperform the market. The 

strong form suggests that stock prices incorporate even private, insider information, thereby 

ruling out any opportunity for insider trading to generate excess returns. While EMH has been 

a central tenet of finance, criticisms have emerged from behavioural finance, which challenges 

the assumption that all market participants behave rationally. For instance, the introduction of 

behavioural finance has highlighted how cognitive biases and emotions can lead to market 

inefficiencies (Malkiel, 2003). 

Recent empirical research continues to explore the validity of EMH in different market 

contexts. Malkiel (2003) critically examined the efficient market hypothesis and its critiques, 

defending the idea that markets are generally efficient over the long term, despite anomalies 

that occasionally arise. He emphasized that while anomalies like the January effect or 

overreactions to news may appear, they do not undermine the overall efficiency of the market 

in the long run. Similarly, Woo et al. (2020) reviewed global market anomalies and pointed out 

that while EMH remains a useful framework for understanding financial markets, certain 

phenomena, such as the day-of-the-week effect, contradict its assumptions. Rossi and Gunardi 

(2018) investigated stock market anomalies in four European countries, revealing mixed 

results. While some anomalies were observed in specific countries, their inconsistency across 

time and markets cast doubt on the universal applicability of EMH. These findings highlight 

that, while markets tend toward efficiency, investor behaviour and market-specific factors can 

lead to deviations from perfect efficiency, suggesting that the full acceptance of EMH may 

need reconsideration in light of new market dynamics and behavioural insights. 

2.2.2 Random Walk Theory 

The Random Walk Theory, initially proposed by Bachelier (1900) and later popularized 

by Burton Malkiel (1973), suggests that stock price movements are inherently unpredictable 

and follow a random path. According to this theory, it is impossible to forecast future stock 
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prices based on historical data, as all available information is quickly reflected in the prices. 

As a result, market participants cannot consistently outperform the market through techniques 

such as technical analysis or stock selection. Malkiel (1973) famously stated that stock prices 

follow a "random walk," implying that price changes are independent of past movements, with 

no discernible pattern that can be exploited for profit. 

Empirical studies have tested the validity of the Random Walk Theory across various 

markets and time periods. Fama (1965) laid the foundation by testing the hypothesis in the U.S. 

stock markets and concluded that stock prices follow a random walk, supporting the notion of 

efficient markets where information is instantly incorporated into prices. Recent studies have 

also contributed to the ongoing debate over the randomness of stock price movements. For 

example, Fadda (2019) found evidence supporting the random walk hypothesis, indicating that 

the price changes in these indexes were not predictable based on historical data. These findings 

reinforce the notion that while stock prices may exhibit random behaviour in the long run, the 

influence of investor psychology and market sentiment should not be overlooked. 

The mathematical formulation of the Random Walk Theory begins by defining the price 

of a financial asset at time 𝑡 as 𝑃𝑡. The model is typically expressed as: 

𝑃𝑡 = 𝑃𝑡−1 + 𝜖𝑡          (1) 

Where: 

• 𝑃𝑡: Asset price at time 𝑡 

• 𝑃𝑡−1: Asset price at time 𝑡 − 1 

• 𝜖𝑡: Random error term (innovation or shock) at time 𝑡, often assumed to be i.i.d. 

(independent and identically distributed), with: 

𝜖𝑡  ~ 𝑁(0, 𝜎2)           (2) 

A more general version includes a drift component μ, representing a constant expected return 

or trend: 

𝑃𝑡 = 𝜇 +  𝑃𝑡−1 + 𝜖𝑡          (3) 

Here, μ shifts the mean direction of the walk (e.g., a positive average return over time). 

Another version is in terms of returns, if 𝑅𝑡 denotes the return from 𝑡 − 1 to 𝑡, then: 

𝑅𝑡 = 𝑃𝑡 − 𝑃𝑡−1 = 𝜇 + 𝜖𝑡         (4) 

This implies that returns are white noise, i.e., they have no autocorrelation and are purely 

random around a mean μ. 

2.2.3 Preferred Habitat Theory 

The Preferred Habitat Theory, initially introduced by Culbertson (1957) and later 

expanded by Modigliani and Sutch (1966), has gained significant attention from both central 

banks and the financial sector (Vayanos & Vila, 2021). This theory explores the behaviour of 

bond investors, asserting that they have distinct preferences regarding the maturities of bonds 

they are willing to purchase. Although investors typically favour shorter-term bonds, they may 
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be inclined to invest in longer-term securities if offered a higher yield to compensate for the 

additional risks associated with such investments. 

In contrast to the Market Segmentation Theory, which posits that investors select bonds 

based purely on yield regardless of maturity, the Preferred Habitat Theory highlights the 

importance of maturity preferences alongside yield considerations (Melvin & Norrbin, 2017). 

This perspective suggests that investors' decisions are influenced by their specific investment 

goals and their risk tolerance, which leads to a more structured approach to bond purchasing. 

The theory helps understand how investor preferences influence the bond market and the 

determination of interest rates. By acknowledging the segmented nature of the market, this 

theory offers valuable insights into the dynamics of bond yield determination, as investors 

require a premium to invest in long-term debt instruments. Ultimately, the Preferred Habitat 

Theory provides a nuanced understanding of the complex relationship between maturity 

preferences and yield in the bond market. 

 

3 Data, Estimation Techniques and Evaluation Criteria 

3.1 Data 

The dataset comprises six (6) financial time series with daily frequency, all quoted on 

the Nigerian Exchange Limited (NGX). Five (5) of these are sectoral and market-wide equity 

indices namely, the All-Share Index (NGSEINDEX), Industrial Index (NGSEINDUS), 

Banking Index (NGSEBNK10), Insurance Index (NGSEINS10), and Oil & Gas Index 

(NGSEOILG5), while the sixth series capture the Nigeria–United States exchange rate 

(USDNGN). The sample spans from January 2, 2021 to December 31, 2024, a period selected 

for its economic significance, as it encompasses key events such as the post-pandemic recovery, 

shifts in monetary policy, and geopolitical developments that likely impacted market volatility 

and investor behaviour. Daily closing prices were sourced from reputable public data providers, 

including Bloomberg and Investing.com (see https://www.bloomberg.com/quote/ and 

https://www.investing.com/), with no adjustments made for public holidays or non-trading 

days. Although the relatively short sample period and reliance on daily frequency present 

certain limitations such as constraints on long-term inference and omission of lower-frequency 

cyclical trends, the approach is justified by the need for high-resolution data to capture short-

term volatility dynamics, clustering, and asymmetry. These features are especially pronounced 

in the post-COVID financial environment and are best modelled using daily observations. The 

return series, 𝑟𝑡, is computed as the natural logarithmic difference of consecutive daily prices, 

i.e., 

𝑟𝑡 = ln (
𝑃𝑡

𝑃𝑡−1
)           (5) 

where 𝑃𝑡 denotes the observed index or exchange rate at time 𝑡. This transformation yields the 

continuously compounded daily returns used for volatility modelling and forecast evaluation. 

3.2 Distribution Fitting 

To identify the most appropriate probability distribution for the dataset, several 

distributions were considered, including the normal, exponential, logistic, Weibull, and log-

normal distributions. The parameters of each distribution were estimated using Maximum 

Likelihood Estimation (MLE), a widely accepted method for parameter estimation in statistical 
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modelling. Once the parameters were estimated, the cumulative distribution function (CDF) 

corresponding to each distribution was obtained. The CDF was then compared to the empirical 

cumulative distribution function (ECDF) derived from the dataset, allowing for an evaluation 

of how well the distributions fit the data. 

To assess the goodness of fit, the Kolmogorov-Smirnov (KS) test was applied. The KS 

test compares the empirical CDF of the data with the CDF of each candidate distribution. The 

test statistic, 𝐷𝑛, is calculated as: 

𝐷𝑛 = sup
𝑥

|𝐹𝑛(𝑥) − 𝐹(𝑥)|         (6) 

Where 𝐹𝑛(𝑥) represents the ECDF of the data, and 𝐹(𝑥) denotes the CDF of the candidate 

distribution. A larger value of 𝐷𝑛 indicates a poorer fit between the observed and theoretical 

distributions. 

The KS test returns a p-value, which is used to determine whether the null hypothesis, 

that the data follows the distribution, can be rejected. A low p-value suggests that the data does 

not conform to the distribution, while a high p-value supports the hypothesis that the data 

follows the distribution. The distribution with the smallest KS statistic (or highest p-value) is 

considered the best-fitting distribution. 

3.3 Volatility Models 

The study employed ARCH, GARCH-M, TGARCH, EGARCH, and PARCH models 

for analysis. The inclusion of these models allows for a comprehensive analysis of financial 

volatility by capturing key features such as volatility clustering (ARCH/GARCH), risk-return 

trade-offs (GARCH-M), asymmetric effects of shocks (TGARCH/EGARCH), and flexible tail 

behaviour (PARCH). Together, these variants enable nuanced modelling of persistence, 

leverage effects, and nonlinearities inherent in financial time series, improving both 

understanding and forecasting accuracy. 

(a) Autoregressive Conditional Heteroskedasticity (ARCH): 

ARCH was developed by in the first seminal paper of Engle (1982). Since then, a lot 

of literature has emerged for the modelling of heteroskedasticity in financial time series. ARCH 

models are used to model time-varying volatility (conditional heteroskedasticity). They capture 

periods of high and low volatility in financial time series data, assuming that volatility is time 

dependent. 

𝑦𝑡 = 𝜇 + 𝜖𝑡           (7) 

where, 

𝜖𝑡 = 𝜎𝑡𝑧𝑡           (8) 

𝑦𝑡: Return at time 𝑡 

𝜇: Mean of the process 

𝜖𝑡: Residuals 

𝜎𝑡: Conditional standard deviation (volatility) 
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𝑧𝑡: White noise error term (e.g., normally distributed) 

The conditional variance (𝜎𝑡
2) is modeled as 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝜖𝑡−1

2 + 𝛼2𝜖𝑡−2
2 + ⋯ + 𝛼𝑞𝜖𝑡−𝑞

2        (9) 

(b) Generalized Autoregressive Conditional Heteroskedasticity (GARCH): 

In practical applications of the ARCH (p) model, it often turned out that the number of 

lag p needed was rather large. To cater for this, Bollerslev (1986) introduced the GARCH (p,q) 

method by including the lag of the conditional variance into the ARCH model. 

The GARCH model is an extension of the ARCH model that incorporates both past 

squared returns (ARCH terms) and past volatilities (GARCH terms) to model time-varying 

volatility. The model combines the autoregressive component of the ARCH model with a 

moving average component: 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1        

 (10) 

where, 

𝜎𝑡
2 is the conditional variance 

𝛼𝑖 and 𝛽𝑗 are parameters to be estimated. 

(c) Exponential Generalized Autoregressive Conditional Heteroskedasticity (EGARCH): 

Introduced by Nelson (1991), the EGARCH model address some limitations of 

GARCH by allowing for asymmetric effects of positive and negative shocks on volatility. This 

model ensures that the variance remains positive at all times by modeling it in an exponential 

form. 

log (𝜎𝑡
2) = 𝛼0 + ∑ 𝛼𝑖

𝜖𝑡−𝑖

𝜎𝑡−𝑖

𝑝
𝑖=1 + ∑ 𝛽𝑗 log (𝜎𝑡−𝑗

2 )
𝑞
𝑗=1      

 (11) 

The logarithmic transformation ensures that the conditional variance (𝜎𝑡
2) is always positive. 

(d) Threshold Generalized Autoregressive Conditional Heteroskedasticity (TGARCH): 

Developed by Engle and Ng (1993), the TGARCH model extends the GARCH model 

by allowing for different impacts of positive and negative returns on volatility (asymmetric 

volatility). This model introduces a threshold variable to distinguish the effects of positive and 

negative shocks. 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖𝜖𝑡−𝑖

2𝑞
𝑖=1 + ∑ 𝛽𝑗𝜎𝑡−𝑗

2𝑝
𝑗=1 + 𝛾(𝕀[𝜖𝑡−1 < 0])𝜖𝑡−1

2     

 (12) 

where, 

𝕀[𝜖𝑡−1 < 0] is an indicator function that takes the value 1 if the past shock is negative (bad 

news) and 0 if it is positive (good news), and 𝛾 represents the asymmetry parameter. 
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(e) Generalized Autoregressive Conditional Heteroskedasticity in Mean (GARCH-M): 

The GARCH-M model is an extension of the GARCH model that allows the conditional 

variance to affect the mean equation. The model was introduced by Engle, Lilien and Robins 

(1983), and it is particularly useful in financial models where the risk (volatility) influences the 

expected return. The model can be expressed as 

𝑦𝑡 = 𝜇 + 𝜆𝜎𝑡 + 𝜖𝑡         

 (13) 

where λ is the risk premium, and the conditional variance 𝜎𝑡
2 follows a GARCH process. The 

volatility enters the mean equation, allowing risk to affect the expected return. 

(f) Power ARCH (PARCH): 

The PARCH model generalizes the ARCH model by allowing for the conditional 

variance to depend on powers of the past squared residuals. This provides greater flexibility to 

model different degrees of volatility persistence. 

𝜎𝑡
2 = 𝛼0 + ∑ 𝛼𝑖|𝜖𝑡−1|𝑝𝑞

𝑖=1         

 (14) 

where 𝑝 is a parameter that controls the degree of persistence in volatility. When 𝑝 = 2, the 

PARCH model reduces to the standard ARCH model. 

3.4 Performance Criteria 

The performance of the fitted model is evaluated using several well-established 

statistical criteria, namely, Akaike’s Information Criterion (AIC), Schwartz’s Bayesian 

Information Criterion (SBIC), Hannan-Quinn Information Criterion (HQIC), and Log-

Likelihood. These criteria, defined in equations 15-18 below, are essential for understanding 

how well the model fits the data while accounting for model complexity (Akaike, 1974; 

Schwarz, 1978; Hannan & Quinn, 1979; Bollerslev, 1986; Dallah & Adeleke, 2009). 

The AIC is a widely used measure for model selection that balances goodness of fit and 

model complexity. Specifically, it provides a relative ranking of models based on their ability 

to explain the observed data, with a penalty for excessive complexity. When comparing 

multiple models, the one with the lowest AIC is considered the best, as it indicates a model that 

explains the data efficiently without overfitting. The AIC is useful in model selection because 

it strikes a balance between goodness of fit and parsimony, making it a robust tool for time 

series analysis and forecasting. 

The Schwartz’s Bayesian Information Criterion (SBIC), is another widely used 

criterion in model selection, which imposes a stronger penalty for model complexity compared 

to AIC, making it more conservative when selecting a model. This characteristic makes the 

SBIC especially suitable when working with large datasets or when the risk of overfitting is a 

concern. Like the AIC, the SBIC allows for the comparison of different models, with the model 

exhibiting the lowest SBIC being considered the best. However, the more severe penalty for 

additional parameters makes the SBIC preferable when the aim is to identify a more 

parsimonious model. 



The Journal of Risk Management and Insurance       Vol. 29  No. 2 (2025) 

 

10 
 

The Hannan-Quinn Information Criterion (HQIC), is another model selection criterion 

that is less sensitive to sample size than the AIC and BIC. Similar to the AIC and SBIC, it 

penalizes models with excessive complexity, but it does so in a way that is less sensitive to 

sample size compared to the AIC and SBIC. The HQC provides a reasonable balance between 

model fit and complexity, offering a valuable alternative when the sample size is small and 

ensuring that the chosen model is not too complex for the available data. 

The Log-Likelihood (LL) is a measure of how well the model explains the observed 

data. For GARCH models, it is derived from the likelihood of the residuals and their conditional 

variances. The higher the log-likelihood, the better the model fits the data. 

These criteria offer a comprehensive framework for evaluating and comparing different 

models. Informed decisions are made by selecting the model that not only fits the data well but 

also avoids overfitting by penalizing unnecessary complexity. Each criterion has its strengths, 

and when used in combination, they provide a robust methodology for model selection and 

performance evaluation. 

𝐴𝐼𝐶 = −2ℒ(𝜃) + 2𝑘         

 (15) 

𝑆𝐵𝐼𝐶 = −2ℒ(𝜃) + 𝑘ln(𝑛)        

 (16) 

𝐻𝑄𝐼𝐶 = −2ℒ(𝜃) + 2𝑘ln(ln(𝑛))       

 (17) 

ℒ(𝜃) = −
𝑛

2
𝑙𝑜𝑔(2𝜋) −

1

2
∑ log(ℎ𝑡)𝑛

𝑡=1 −
1

2
∑

𝑒𝑡
2

ℎ𝑡

𝑛
𝑡=1      

 (18) 

Where: 

ℒ(𝜃) is the log-likelihood; 

𝑛 the number of observations; 

ℎ𝑡 is the conditional variance at time 𝑡 (calculated from the GARCH model). 

𝑒𝑡 is the residual at time 𝑡 

𝜃 are the parameters of the GARCH model. 
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4 Results and Discussion 

4.1 Results of Fitted Distribution using QuickFit 

    The dataset for the various index data were fitted to a distribution to ascertain the distribution 

with best fit. The result of fitted distribution to the price and return of each index is below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Fitted distributions of six securities 
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For the index price, four of the six indexes followed a lognormal 3P distribution and 

the remaining two followed a Frechet 3P distribution. In a similar manner, the logistic 

distribution is the distribution that demonstrates a superior fit for the returns of the indexes, 

which is in tandem with many literatures that showed that financial returns follow a logistic 

distribution (see. Levy & Levy, 2024; Ahmad, 2018). 

4.2 GARCH Models 

The table below displayed the descriptive statistics of six (6) securities. 

Table 4.1: Descriptive Statistics for the return of various securities 

Descriptive 

Statistics 
NGSEINDEX NGSEINDUS NGSEBNK10 NGSEINS10 NGSEOILG5 USDNGN 

Mean 0.000956 0.000615 0.001163 0.001457 0.002623 0.001574 

Median 0.000275 0.00000397 0.000552 0.001063 0.000000 0.000000 

Maximum 0.052325 0.097166 0.265205 0.229837 0.160146 0.319694 

Minimum -0.032267 -0.060219 -0.146256 -0.148753 -0.14124 -0.12682 

Standard 

Deviation 
0.007636 0.014277 0.018866 0.017645 0.014905 0.022502 

Skewness 0.665744 1.299363 2.597611 1.632875 1.680092 5.785262 

Kurtosis 9.009405 17.254450 48.27561 37.46889 31.2437 78.91453 

Jarque-Bera 1561.211 8651.390 85584.39 49399.31 33337.44 255777.7 

Probability 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

NGSEINDEX is the Nigeria All Share Index, NGSEINDUS is the Nigeria Industrial Index, NGSEBNK10 is the 

Nigeria Banking Sector Index, NGSEINS10 is the Nigeria Insurance Sector Index, NGSEOILG5 is the Nigeria 

Oil Sector Index, and USDNGN is the exchange rate for United States Dollar to Nigerian Naira. 

Figure 4.1 illustrates a series of two distinct line charts that provide a comprehensive 

view of the behaviour of each of six securities over time. The first chart displays the price 

movements of each security, offering a visual representation of how each security’s price has 

evolved throughout the period under consideration. This chart helps to highlight trends, 

fluctuations, and any notable price changes, allowing for a deeper understanding of the market 

performance of these assets. The second chart, which is positioned alongside the first, presents 

the returns of each security. The return chart is particularly useful for assessing the risk and 

performance of the securities. 
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NGSEINDEX is the Nigeria All Share Index, NGSEINDUS is the Nigeria Industrial Index, NGSEBNK10 is the 

Nigeria Banking Sector Index, NGSEINS10 is the Nigeria Insurance Sector Index, NGSEOILG5 is the Nigeria 

Oil Sector Index, and USDNGN is the exchange rate for United States Dollar to Nigerian Naira. 

Figure 4.2: Line chart for six securities 
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Table 4.2: Stationarity Test for the securities 

Bond maturities 
ADF test (No differencing) 

Statistic p-value 

NGSEINDEX -25.359190 0.0000 

NGSEINDUS -10.73344 0.0000 

NGSEBNK10 -24.34005 0.0000 

NGSEINS10 -21.48712 0.0000 

NGSEOILG5 -27.63416 0.0000 

USDNGN -21.15699 0.0000 

Source: Author’s computation 

To test for stationarity, the Augmented Dickey-Fuller (ADF) test was done. For all the 

securities, the ADF test results strongly suggest that the null hypothesis of a unit root can be 

rejected at conventional significance levels (e.g., 1%, 5%, or 10%), as evidenced by the highly 

negative t-statistics and p-values of 0.0000. This indicates that the returns of these securities 

are stationary without requiring differencing, and they are well-suited for modelling and 

forecasting, as their statistical properties do not change over time. 

Table 4.3: Test of Heteroskedasticity 

ARCH 

Effects 
NGSEINDEX NGSEINDUS NGSEBNK10 NGSEINS10 NGSEOILG5 USDNGN 

F-statistic 24.46874 151.6077 45.09981 15.42005 104.0162 10.84662 

p-value 0.0000 0.0000 0.0000 0.0001 0.0000 0.0010 

Source: Author’s computation 

The p-value from table 4.3 are statistically significant. This suggests the presence of 

ARCH effects, meaning the variance of the residuals is time-varying, conditional on past 

shocks, and exhibits volatility clustering, which implies that the securities may require a model 

like GARCH to account for their time-varying volatility. 

Table 4.4 reports model performance across multiple financial indices and the exchange 

rate (USD/NGN), using standard model selection criteria such as Akaike Information Criterion 

(AIC), Schwarz Bayesian Information Criterion (SBIC), Hannan-Quinn Information Criterion 

(HQIC), and log-likelihood (LL). The analysis reveals that no single GARCH-type model 

dominates across all datasets, underscoring the importance of model selection in relation to the 

distinct volatility dynamics embedded within each time series. Across all datasets, the basic 

ARCH model consistently exhibits higher AIC, SBIC, and HQIC values compared to its 

extensions, indicating that GARCH-type models provide a superior fit. For the NGSEINDEX 

dataset, the PARCH model exhibits the lowest AIC (-7.107352), values, along with the highest 

log-likelihood (3518.032), suggesting it offers the best performance among the evaluated 

models. 
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Table 4.4: Performance Metrics of Fitted Models for various Securities 

Data Models 

Statistic 

AIC SBIC HQIC LL 

NGSEINDEX 

ARCH -7.026854 -7.007034 -7.019317 3475.266 

GARCH -7.105678 -7.080903 -7.096256 3515.205 

EGARCH -7.095913 -7.066182 -7.084606 3511.381 

TGARCH -7.106911 -7.07718 -7.095604 3516.814 

GARCH-M -7.106847 -7.077116 -7.09554 3516.782 

PARCH -7.107352 -7.072666 -7.094161 3518.032 

NGSEINDUS 

ARCH -5.924672 -5.904851 -5.917134 2930.788 

GARCH -5.958745 -5.933969 -5.949323 2948.62 

EGARCH -5.954769 -5.925038 -5.943462 2947.656 

TGARCH -5.963548 -5.933817 -5.952242 2951.993 

GARCH-M -5.96619 -5.93646 -5.954884 2953.298 

PARCH -5.962053 -5.927367 -5.948862 2952.254 

NGSEBNK10 

ARCH -5.595695 -5.575875 -5.588158 2768.273 

GARCH -5.731072 -5.706296 -5.72165 2836.15 

EGARCH -5.722356 -5.692626 -5.71105 2832.844 

TGARCH -5.730979 -5.701248 -5.719672 2837.104 

GARCH-M -5.729611 -5.69988 -5.718304 2836.428 

PARCH -5.732487 -5.697801 -5.719296 2838.848 

NGSEINS10 

ARCH -5.592894 -5.573073 -5.585356 2766.89 

GARCH -5.712662 -5.687886 -5.70324 2827.055 

EGARCH -5.729093 -5.699363 -5.717787 2836.172 

TGARCH -5.733759 -5.704029 -5.722453 2838.477 

GARCH-M -5.711189 -5.681458 -5.699883 2827.327 

PARCH -5.735537 -5.700851 -5.722346 2840.355 

NGSEOILG5 

ARCH -5.728311 -5.70849 -5.720773 2833.786 

GARCH -5.755965 -5.73119 -5.746543 2848.447 

EGARCH -5.840282 -5.810551 -5.828975 2891.099 

TGARCH -5.801805 -5.772074 -5.790499 2872.092 

GARCH-M -5.754108 -5.724377 -5.742802 2848.529 

PARCH -5.840866 -5.80618 -5.827675 2892.388 

USDNGN 

ARCH -5.056569 -5.037543 -5.049352 2633.416 

GARCH -5.265437 -5.241654 -5.256415 2743.027 

EGARCH -5.509764 -5.481224 -5.498937 2871.077 

TGARCH -5.304203 -5.275663 -5.293376 2764.186 

GARCH-M -5.271936 -5.243395 -5.261109 2747.407 

PARCH -5.310698 -5.277401 -5.298067 2768.563 

Source: Author’s computation 

AIC is Akaike Information Criterion, SBIC is Schwarz Bayesian Information Criterion, HQC 

is Hannan-Quinn Information Criterion, and LL is Log-Likelihood. 

 

A similar trend is observed in the NGSEINDUS dataset, where the GARCH-M model 

outperforms others with the lowest AIC (-5.96619), SBIC (-5.93646), HQIC (-5.954884), and 
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highest log-likelihood (2953.298). In the NGSEBNK10 and NGSEINS10 datasets, the PARCH 

model consistently exhibits the best performance, as indicated by the lowest AIC and highest 

LL values (2838.848 and 2840.355, respectively). This suggests that PARCH may better 

capture the volatility structure in these financial series. For NGSEOILG5, both the PARCH 

and EGARCH models perform well, with PARCH displaying the lowest AIC (-5.840866) and 

the highest LL (2892.388), closely followed by EGARCH. This suggests that asymmetric 

effects may be present in oil-related financial data. Finally, for the USDNGN exchange rate 

data, the EGARCH model demonstrates superior performance, as reflected in the lowest AIC 

(-5.509764) and the highest LL (2871.077). This result aligns with the understanding that 

exchange rate volatility often exhibits asymmetric properties, which EGARCH models are 

designed to capture. 

The Power ARCH (PARCH) model demonstrates superior performance for the banking 

and insurance sector indices. This result is theoretically consistent with the nature of financial 

return series in these sectors, which often exhibit volatility clustering, long memory, and 

leverage effects. Unlike standard GARCH models, the PARCH framework introduces a 

flexible power term (δ) that allows the conditional standard deviation to respond nonlinearly 

to past innovations. This is particularly valuable in capturing persistent and asymmetric 

volatility patterns typical in highly regulated and macro-sensitive sectors like banking and 

insurance. These sectors are also exposed to systemic risk and policy interventions, which can 

lead to sharp volatility swings that are better captured through the additional flexibility 

embedded in the PARCH structure. The superior performance of the Exponential GARCH 

(EGARCH) model in modelling the USD/NGN exchange rate is consistent with the known 

features of exchange rate dynamics in emerging markets. Exchange rate volatility, particularly 

in economies such as Nigeria’s, is often driven by external shocks, speculative pressures, 

political risk, and macroeconomic asymmetries, factors that lead to nonlinear and asymmetric 

responses in volatility. EGARCH explicitly models the log of conditional variance and allows 

for asymmetric effects, whereby positive and negative shocks of equal magnitude have 

differing impacts on volatility. The USD/NGN exchange rate has historically exhibited higher 

sensitivity to negative news (e.g., oil price declines, devaluation fears, policy uncertainty) than 

to positive developments. The EGARCH model, by design, captures such effects through its 

leverage term, which accounts for the sign and magnitude of past shocks. Thus, its superior 

performance is not only statistically significant but also econometrically appropriate given the 

stylized facts of exchange rate behaviour in developing economies. 

Table 4.5: Prediction performance for models obtained for various Securities 

Data Models 

Statistic 

AIC SBIC HQIC LL 

NGSEINDEX PARCH -7.107352 -7.072666 -7.094161 3518.032 

NGSEINDUS GARCH-M -5.96619 -5.93646 -5.954884 2953.298 

NGSEBNK10 PARCH -5.732487 -5.697801 -5.719296 2838.848 

NGSEINS10 PARCH -5.735537 -5.700851 -5.722346 2840.355 

NGSEOILG5 PARCH -5.840866 -5.80618 -5.827675 2892.388 

USDNGN EGARCH -5.509764 -5.481224 -5.498937 2871.077 

Source: Author’s computation 



The Journal of Risk Management and Insurance       Vol. 29  No. 2 (2025) 

 

17 
 

The results indicate that more flexible GARCH-type models, particularly PARCH and 

EGARCH, tend to outperform the basic ARCH model across various financial time series. 

These findings emphasize the importance of incorporating asymmetric and power effects in 

modelling financial market volatility. The comparative analysis of ARCH and its GARCH 

extensions across various datasets aligns with existing literature emphasizing the efficacy of 

GARCH-type models in capturing financial time series volatility. For instance, Nugroho et al. 

(2019) conducted an empirical study comparing GARCH, GARCH-M, GJR-GARCH, and log-

GARCH models using daily data from indices such as the DJIA and S&P 500, concluding that 

the GJR-GARCH model demonstrated the best overall fit to the data. Similarly, Ekong and 

Onye (2017) investigated the Nigerian stock market and found that GARCH(1,1) and 

augmented EGARCH(1,1) models, particularly under the Generalized Error Distribution 

(GED), exhibited superior forecasting capabilities. However, in a study by Setiawan et al. 

(2020), the study concluded that the Asymmetric Power GARCH (APARCH) model 

outperformed other asymmetric models, including EGARCH and TGARCH, in modelling 

daily stock return volatility, as evidenced by lower AIC and SBIC values. These findings 

corroborate the current results, where models like PARCH and EGARCH demonstrated 

superior performance metrics, underscoring the importance of accommodating asymmetries in 

financial volatility modelling. 

 

5 Conclusion 

This study set out to examine the behaviour and model the time series of six securities 

in Nigeria using daily data from the NGX. Volatility models including ARCH, GARCH, 

EGARCH, TGARCH, GARCH-M, and PARCH were applied, with performance assessed 

using AIC, SBIC, HQIC, and Log-Likelihood criteria. The analytical process involved fitting 

and comparing these models to evaluate their effectiveness in capturing the dynamics of each 

time series. The analysis of financial returns reveals that the logistic distribution offers a more 

accurate representation of the returns of the examined indexes, aligning with findings from 

previous studies (e.g., Levy & Levy, 2024) that highlight its effectiveness in capturing the 

empirical characteristics of financial market behaviour. The heavy tails and skewness observed 

in the returns suggest that the logistic distribution is better suited to model extreme values and 

fluctuations in the market compared to more traditional distributions like the normal or 

lognormal. This reinforces the growing recognition in the literature that the logistic 

distribution, with its ability to account for the non-normal features of financial returns, offers 

a more accurate and reliable framework for understanding and forecasting financial market 

dynamics. Consequently, this study supports the need for adopting flexible distributional 

models, such as the logistic distribution, to enhance the precision of financial modelling and 

risk assessment. 

The comprehensive analysis of ARCH and its various GARCH extensions across 

multiple financial datasets underscores the critical importance of selecting appropriate 

volatility models to accurately capture the inherent dynamics of financial time series. The 

findings indicate that models incorporating asymmetry and power effects, such as the PARCH 

and EGARCH models, often outperform the standard ARCH model. This is evidenced by their 

superior performance metrics, including lower values of the Akaike Information Criterion 

(AIC), Schwarz Bayesian Information Criterion (SBIC), and Hannan-Quinn Information 
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Criterion (HQIC), as well as higher log-likelihood (LL) values. These model-specific insights 

provide practical guidance for portfolio managers in selecting volatility forecasting tools 

tailored to different asset classes and sectors, thereby supporting more informed investment 

decisions and risk-adjusted asset allocation strategies. 

These results are consistent with existing literature that emphasizes the efficacy of 

asymmetric GARCH models in capturing financial time series volatility. For instance, Nugroho 

et al. (2019) conducted an empirical study comparing GARCH, GARCH-M, GJR-GARCH, 

and log-GARCH models using daily data from indices such as the DJIA and S&P 500. Their 

findings indicated that the GJR-GARCH model yielded the most satisfactory fit, highlighting 

the significance of accounting for asymmetries in volatility modelling. Similarly, Ekong and 

Onye (2017) investigated the Nigerian stock market and found that GARCH(1,1) and 

augmented EGARCH(1,1) models, particularly under the Generalized Error Distribution 

(GED), exhibited superior forecasting capabilities. This underscores the effectiveness of 

models that capture asymmetries and leverage effects in financial time series. 

Furthermore, Gyamerah (2019) examined the volatility of Bitcoin using various 

GARCH-type models and found that the TGARCH model, which accounts for asymmetries, 

was the most effective in capturing the unique characteristics of Bitcoin returns. This 

underscores the importance of considering asymmetric models when dealing with financial 

assets that exhibit non-linear behaviours. The superior performance of asymmetric GARCH 

models can be attributed to their ability to capture leverage effects, where negative shocks have 

a more pronounced impact on volatility than positive shocks of the same magnitude. This 

characteristic is crucial for accurate risk assessment and forecasting in financial markets. From 

a policy standpoint, the sector-specific volatility patterns revealed by the preferred models offer 

regulators empirical tools for monitoring financial stability, designing targeted interventions, 

and anticipating systemic risk transmission. 

The findings from this analysis align with the broader consensus in financial 

econometrics that incorporating asymmetries and non-linearities leads to more robust and 

reliable volatility modelling. The empirical evidence from this study and supporting literature 

highlights the necessity of employing advanced GARCH-type models that account for 

asymmetries and power effects to effectively model and forecast volatility in financial time 

series. This approach enhances the accuracy of risk management strategies and investment 

decisions in both developed and emerging financial markets. 
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